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Synthèse des travaux

Introduction

Contexte L’eau est omniprésente sur terre. D’après (Gleick, 1993), 71% de la surface
terrestre est couverte d’eau. Seulement, 97,5% de celle-ci est salée. La plupart des
réserves d’eau douce sont contenues dans des glaciers ou sont souterraines, les lacs ne
comptant que pour 0,26%. Alors que cette ressource n’est présente qu’en quantité
limitée, la demande d’eau a crû deux fois plus rapidement que la population sur le
siècle dernier d’après l’OCDE1. Les conséquences sont dramatiques: d’après l’OMS, 3,4
millions de personnes meurent chaque année de maladies liées à l’eau2 et d’ici 2025,
l’ONU estime que deux tiers de la population mondiale pourrait avoir des difficultés
pour accéder à l’eau 3. Il apparaît alors primordial de surveiller ces ressources. Pour
cela, les hydrologues utilisent principalement des données acquises sur place, dont la
couverture spatiale est limitée par un coût élevé.

Afin d’obtenir des mesures globales et régulières, les scientifiques ont commencé à
utiliser des données satellitaires. On peut par exemple citer les missions Jason qui
utilisent l’altimétrie radar afin de mesurer la topographie des surfaces océaniques. En
hydrologie, la mission GRACE a été utilisée pour mesurer les changements dans les
réserves d’eau (Ramillien et al., 2008).

La future mission SWOT (Surface Water and Ocean Topography) a pour objec-
tif de faire la première mesure globale des hauteurs d’eau de surface. Dans la lignée
de la collaboration entre le CNES et le laboratoire JPL de la NASA, cette mission
est aussi menée en collaboration avec l’agence spatiale Canadienne (CSA) et celle du
Royaume-Uni (UKSA). Le lancement du satellite est prévu pour Avril 2021. Afin de
mener à bien l’objectif de mesurer les variations de hauteur d’eau, le radar à synthèse
d’ouverture (SAR) est particulièrement adapté: en plus de sa capacité à acquérir des
données quelles que soient les conditions climatiques, sa stabilité radiométrique permet
d’avoir des mesures comparables dans le temps et les capacités interférométriques per-
mettent l’obtention d’une mesure de hauteur. Afin d’obtenir ces mesures, une étape
cruciale est la détection de l’eau. Dans le cadre de la collaboration, une distribu-
tion précise des tâches a été effectuée, et le CNES est en charge de cette partie. Le
développement d’algorithmes pour la détection d’eau sur les images continentales de

1voir http://www.oecd.org/publications/factbook/34416097.pdf
2see http://www.who.int/water_sanitation_health/takingcharge.html
3see http://www.un.org/waterforlifedecade/scarcity.shtml

http://www.oecd.org/publications/factbook/34416097.pdf
http://www.who.int/water_sanitation_health/takingcharge.html
http://www.un.org/waterforlifedecade/scarcity.shtml
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SWOT est l’objectif principal du travail proposé. Certaines des méthodes présentées
dans ce document ont été implémentées dans la chaîne de traitement du CNES pendant
le déroulement de cette thèse.

Nous avons vu que l’un des objectifs de SWOT est de détecter les changements,
ce qui implique l’utilisation de données acquises à différentes dates. De telles données
n’étant pas disponibles, nous avons utilisé des données SAR issues d’autres capteurs
avec le même type de méthodes mais pour d’autres applications. Nous montrons dans
la suite que certaines parties de ce travail sont néanmoins également utiles dans le cadre
de SWOT.

Contributions Les contributions de ce manuscrit peuvent être divisées en 3 caté-
gories:

• des méthodes dédiées pour la détection de l’eau dans les images SWOT;

• des méthodes de traitement de séries temporelles d’images SAR urbaines;

• des méthodes génériques pour le traitement de grandes quantités de données et/ou
de séries temporelles.

Alors que la première et la deuxième catégories visent des applications spécifiques, la
dernière comprend les techniques développées pour le traitement de séries temporelles
qui peuvent être utilisées dans le cadre de SWOT.

Les objets d’intérêt en hydrologie peuvent être classifiés en se basant sur leur forme
générale: soit cet objet est de taille importante et compact (lac), soit il est d’aspect
linéique (rivière). Ainsi, deux méthodes ont été développées pour détecter ces deux
types d’objets:

Contribution (1): Méthodes pour la détection de grands plan d’eau

À cause du diagramme d’antenne, des variations dans la rugosité et du faible rap-
port signal sur bruit (SNR) de la terre dans les images SWOT, les paramètres de la
classe eau et ceux de la classe terre ne peuvent être considérés constants à travers
l’image. Pour prendre en compte ces variations, trois méthodes d’estimation des
paramètres sont proposées:

• une estimation se basant sur une connaissance a priori du X-factor (obtenu
à partir d’un modèle numérique de terrain, la forme attendue du diagramme
d’antenne et le SNR);

• une estimation itérative basée sur un partitionnement de l’image;

• une estimation dense itérative utilisant un champ de Markov (MRF) sur
les cartes de paramètres.

La classification est obtenue conjointement avec l’estimation des paramètres en
utilisant un modèle d’Ising optimisé exactement.
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Contribution (2): Détection des rivières fines

La méthode proposée pour la détection de rivières fines dans les images SWOT
est une approche en deux temps:

1. une détection au niveau du pixel de segments de rivière;

2. la connexion de ces segments et leur sélection d’après des propriétés globales
de réseaux de rivières.

La détection s’inspire des travaux de (Tupin et al., 1998; Cao et al., 2011) et les
connexions se font en utilisant l’algorithme de Dijkstra. Enfin, la sélection des
connexions utilise un MRF afin d’introduire des a priori de forme sur l’ensemble
du réseau.

Une des principales difficultés dans l’interprétation d’images SAR est la présence
de speckle pouvant être interprété comme un bruit multiplicatif. Bien que de nom-
breuses techniques de filtrage de ce speckle aient été développées, la plupart n’arrivent
pas à prendre en compte la présence de rétro-diffuseurs forts, typiquement présents en
zone urbaine. Dans cette optique, (Denis et al., 2010) présente une technique de dé-
composition qui modélise l’image comme une somme de deux composantes: un fond
(spatialement régulier) et les rétro-diffuseurs forts. Dans ce manuscrit on propose une
extension de ce modèle aux séries temporelles avec des applications pour la détection
de cibles, de changement et la régularisation d’images.

Contribution (3): Modèles de décomposition pour les séries tem-
porelles d’images SAR

On présente un cadre général pour décomposer une série temporelle en deux
composantes: un ou plusieurs fonds et une composante de cibles fortes pour
chaque image dans la série. Cette formulation permet de mettre des a priori
différents sur chaque composante, donnant trois modèles:

• TVR: autant d’images de fond et de cibles que d’images en entrée. Modèle
adapté pour la régularisation et la détection de cibles fortes;

• TV1BG: un fond pour la totalité de la série, et autant de composantes de
cibles que d’images en entrée. Ce modèle est adapté pour la détection de
cibles;

• TV1C: un fond pour la totalité de la série, et autant de composantes de
cibles que d’images en entrée, avec une contrainte supplémentaire sur les
cibles afin de détecter les changements.

Un des avantages de la formulation proposée est que ces modèles peuvent être
optimisés exactement. Une étude présentée dans cette thèse montre aussi que
relâcher la pseudo-norme L0 vers L1 dégrade les résultats dans ce contexte.
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Figure 1 – Vue schématique des contributions de cette thèse.

Certaines méthodes développées pour le traitement des séries temporelles peuvent
être utilisées dans le cadre de SWOT lorsque des données temporelles seront disponibles.
Par ailleurs, la contribution suivante peut être directement utilisée:

Contribution (4): Optimisation efficace des MRF

Les techniques d’optimisation par coupe dans un graphe peuvent être utilisées
pour obtenir le minimum global de certaines énergies mais demandent générale-
ment une grande quantité de mémoire, ce qui peut être un obstacle à leur utili-
sation sur des applications réelles. Ainsi, une méthode simple d’optimisation par
blocs permettant un compromis entre qualité du résultat et quantité de mémoire
est présentée. Dans le cas de SWOT, cette technique pourrait être utilisée pour
la détection d’eau dans des grandes images ou des séries temporelles.

Enfin, on montre dans la Figure 1 un diagramme contextualisant les différentes
contributions présentées dans ce manuscrit.
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Classification eau/terre

En ce qui concerne les applications en hydrologie, un des objectifs principaux de SWOT
est d’estimer les hauteurs d’eau. Pour ce faire, le satellite utilise l’interférométrie SAR.
Cependant, pour appliquer les traitements interférométriques il est nécessaire de savoir
où se trouve l’eau. Ainsi, l’objectif principal de cette section est de détecter l’eau à
partir d’une image d’amplitude acquise par SWOT et notée v. En d’autres termes, on
cherche une carte u telle que:

ui =

1 si i est un pixel d’eau,

0 si i est un pixel de terre.

La classification binaire est un problème classique (dont on présente un état-de l’art
dans la section 4.2), mais dans le cas de SWOT deux spécificités doivent être prises en
compte:

• Les paramètres de classes ne sont pas constants à travers l’image. Avoir des
paramètres constants est souvent une hypothèse des algorithmes de classification.
Dans ce document est présenté un algorithme pour conjointement estimer les
paramètres de classes et réaliser la classification.

• La plupart des méthodes de classification intègrent un a priori de régularité spa-
tiale. Cependant, dans le cas de l’hydrologie, une rivière ne répond généralement
pas au critère de compacité spatiale qui convient pour un lac. Ainsi, nous pro-
posons un algorithme dédié à la détection de rivières fines.

Deux approches distinctes ont donc été étudiées.

Classification binaire avec a priori de régularité spatiale pour des
classes dont les paramètres ne sont pas constants

Aperçu de l’état de l’art Dans un cadre Bayesien, la solution la plus simple pour
trouver une classification u à partir d’une observation v est d’utiliser le maximum de
vraisemblance:

û = arg max
u

p(v|u) . (1)

La vraisemblance, dans le cas d’une image d’amplitude SAR, suit une loi de Rayleigh-
Nakagami de paramètres µ et L:

p(v|µ) =
2
√
L

Γ(L)µ

(
v
√
L

µ

)2L−1

e
−
(
v
√
L
µ

)2

. (2)

Toujours dans un cadre Bayesien, il est possible d’intégrer des a priori en utilisant
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(a) Image d’entrée (b) Image simulée cor-
respondante

(c) Estimation au
sens du maximum de
vraisemblance

(d) Estimation au sens
du maximum a poste-
riori

Figure 2 – Exemple sur une image SAR simple simulée. Les deux classes suivent une
loi de Rayleigh-Nakagami de paramètres µ0 = 10 et µ1 = 20, L = 1.

le théorème de Bayes:

û = arg max
u

p(v|u)p(u)

p(v)
(3)

= arg max
u

p(v|u)p(u) (4)

On parle alors de la solution au sens du maximum a posteriori (MAP). Cet a priori
peut-être statistique (proportion relative des classes) ou spatial par exemple. Lorsque
l’on souhaite intégrer des a priori spatiaux, une approche classique est d’utiliser un
champ de Markov, ce qui sera la solution proposée dans cette partie. En effet, que l’on
utilise l’estimateur au sens du maximum de vraisemblance ou du maximum a posteriori
avec des a priori définis au niveau du pixel, on peut aisément montrer que cela revient
à appliquer un seuil. Or, nous avons vu que les images SAR sont sujettes au speckle,
qui introduit de fortes variations. Une approche purement pixellique donnera donc un
résultat bruité comme on le montre dans la Figure 2.

D’autres solutions existent pour intégrer des a priori spatiaux: on peut par exemple
citer des approches débruitant l’image dans un premier temps (apportant donc une
régularité spatiale) puis faisant la classification dans un second (Cazals et al., 2016;
Cao et al., 2011). Une approche suivant une idée similaire consiste à faire une
segmentation (qui intégrera des critères de régularité) puis à classifier les régions
segmentées (Touzi et al., 1988; Fjørtoft et al., 1998).

Les champs de Markov, depuis les travaux de (Geman and Geman, 1984) sont
fréquemment utilisés pour introduire des relations spatiales dans un modèle. Cette
formulation permet de prendre en compte des relations spatiales à l’échelle de l’image
en ne les modélisant qu’à l’échelle du voisinage d’un pixel. Dans un tel cadre la solution
optimale est donnée par l’équation suivante:

û = E(u) = DT(v,u) + P(u) , (5)

où DT(v,u) est le terme d’attache aux données (le plus souvent lié à la physique
d’acquisition), et P(u) est l’a priori sur l’image. Ainsi, modéliser un problème avec
un champ de Markov revient à définir ces deux termes.
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(a) Image d’amplitude
SWOT simulée sur la ré-
gion de la Camargue

(b) Résultat en utilisant
un unique paramètre
pour chaque classe

Légende: Vrai positif Vrai négatif Faux positif Faux négatif

Figure 3 – Extrait d’un résultat obtenu en utilisant un champ de Markov avec des
paramètres constants sur une image SWOT simulée. On note une plus grande présence
de faux négatifs en début de fauchée qu’en milieu.

Dans un cas binaire, et lorsque l’on souhaite avoir une solution compacte (d’un point
de vue spatial), il est courant d’utiliser comme a priori le modèle d’Ising qui pénalise des
pixels voisins n’appartenant pas à la même classe. Lorsqu’on applique un tel champ de
Markov (en prenant la log-vraisemblance négative de Rayleigh-Nakagami comme attache
aux données) sur une image d’amplitude SWOT, on obtient le résultat présenté dans
la Figure 3. Comme on peut le constater, le nombre de faux positifs n’est pas le même
en début de fauchée qu’en milieu. Ce phénomène s’explique en partie en regardant la
Figure 4. On voit que les paramètres de classes ne peuvent être efficacement considérés
constants le long de la fauchée à cause du diagramme d’antenne. A cela s’ajoutent les
variations locales dues aux variations dans la rugosité des surfaces d’eau.

Prise en compte de paramètres non constants Une façon d’améliorer les résul-
tats de classification est alors de considérer des paramètres non constants dans l’image.
Afin d’estimer ces paramètres, quatre méthodes sont proposées dans ce document:

1. estimation basée sur le Xfactor (sous-produit de l’acquisition qui lie le signal reçu
à la réflectivité des classes). Cette méthode est une simple inversion de formule
mais part d’hypothèses sur la réflectivité des classes et la topographie (estimée
depuis un modèle numérique de terrain potentiellement imprécis et daté).

2. Estimation par fenêtre glissante: en considérant que la plupart des variations
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Figure 4 – Evolution moyenne des paramètres le long de la fauchée. Les courbes bleue
et verte montrent les paramètres de l’eau et de la terre respectivement, et la courbe
rouge montre l’estimation au sens du maximum de vraisemblance du paramètre de
l’eau lorsque l’on fait l’hypothèse que celui-ci est constant dans l’image. La courbe de
l’eau montre l’effet du diagramme d’antenne alors que les paramètres de la terre sont
plus constants car le signal est dominé par le bruit thermique.

de paramètres proviennent du diagramme d’antenne (et ne se produisent donc
que le long de la fauchée), il semble naturel, à partir d’une première classifica-
tion, d’utiliser une fenêtre glissante de la même hauteur que celle de l’image afin
d’obtenir les paramètres. Cette méthode a l’inconvénient de ne prendre qu’un
type de variation en compte (tout du moins explicitement) et de dépendre d’une
classification.

3. Estimations itératives: les deux prochaines méthodes s’appuient sur un schéma
itératif tel que présenté dans la Figure 5:

• approche basée régions: l’idée de cette méthode est de partitionner l’image en
régions sur lesquelles sont calculés les paramètres. Ainsi, pour chaque région,
on obtient un paramètre pour chacune des classes. Pour obtenir une estima-
tion variable des paramètres de bonne qualité, on souhaite respecter deux
critères contradictoires: (i) un critère de localité, afin de prendre en compte
les variations; (ii) un critère imposant des régions suffisamment grandes, afin
que l’estimation soit peu bruitée. Ainsi, on propose une approche utilisant
un partitionnement en arbre quaternaire à chaque itération. Le partition-
nement est poursuivi jusqu’à ce que le critère (ii) ne soit plus respecté pour
toutes les régions (état de convergence).

• approche champs de Markov: pour cette méthode, on modélise les cartes de
paramètres par des champs de Markov imposant une régularité spatiale. Le
terme d’attache aux données pour la carte des paramètres de la classe eau
(resp. terre) n’est défini que pour les pixels marqués comme appartenant à la
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Figure 5 – Estimation itérative des paramètres: à partir de paramètres constants, une
première classification est obtenue. De nouveaux paramètres, variables cette fois-ci,
sont alors estimés et une nouvelle classification est obtenue. Ce processus est répété
jusqu’à convergence ou pour un nombre fixé d’itérations.

Méthode TPR FPR Taux d’erreur MCC(détection d’eau)
MLE 83.26% 7.54% 54.85% 0.7023
MAP 39.94% 0.32% 61.69% 0.5817
MRF 91.27% 2.11% 19.41% 0.8847

MRF (approche région) 93.16% 2.95% 21.74% 0.8748
MRF (approche Markov) 91.80% 2.18% 19.22% 0.8863

Table 1 – Performances sur l’image de Camargue

classe eau (resp. terre) dans la classification courante. Afin d’avoir une én-
ergie convexe, le modèle est défini sur le logarithme des cartes de paramètres.
Dans ce cas-là, les données suivent une distribution de Fisher-Tipett qui peut
être approximée par une distribution Normale. Ainsi, le terme d’attache aux
données est une simple distance L2. Cette même distance est utilisée pour
les termes d’a priori spatiaux et de rappel aux paramètres théoriques définis
par le Xfactor.

Résultats Des résultats sont montrés sur l’image de Camargue, à la fois visuellement
(Figure 6) et quantitativement (Table 1). Pour ce qui est des performances chiffrées, le
Taux de Vrais Positifs (TPR) et le Taux de Faux Négatifs (FPR) montrent que selon le
niveau de faux positifs acceptables, différentes méthodes peuvent être utilisées. Lorsque
l’on regarde les performances globales (MCC, entre -1 (mauvaise classification partout)
et 1 (classification parfaite) et le taux d’erreur (0% pour une classification parfaite)), on
constate que l’approche utilisant un champ de Markov pour l’estimation des paramètres
donne les meilleurs résultats. Dans la section 4.5, des résultats sur 3 autres images sont
montrés. Globalement, on constate que l’estimation des paramètres, qui représente
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(a) Image d’amplitude (b) MRF avec les paramètres
constants

(c) MRF avec l’estimation
des paramètres Markovienne

Légende: Vrai positif Vrai négatif Faux positif Faux négatif

Figure 6 – Résultats sur l’image de Camargue

l’originalité des méthodes proposées, améliore les résultats. Cette amélioration peut-
être faible (comme sur le cas de la Camargue) ou beaucoup plus spectaculaire (voir le
cas de Kaw dans le Chapitre 4 par exemple).

Détection des rivières fines

De par l’objectif (détection des grands plans d’eau), les méthodes vues à la sous-section
précédente ne sont pas capables de détecter les rivières fines. Pourtant, les réseaux de
rivières présentent un intérêt pour les utilisateurs finaux de SWOT. Ainsi, un travail
dédié à la détection de ces éléments a été effectué. Alors que peu de travaux sur ce sujet
en particulier sont présents dans la littérature, des problèmes similaires ont été traités:
détection de fissures dans les routes (Amhaz et al., 2016), la détection de veines dans
une image de fond d’œil (Rossant and others, 2011) ou encore la détection de routes
dans les images SAR (Tupin et al., 1998). Cette dernière méthode utilise une approche
en deux temps: d’abord une détection de segments au niveau du pixel, puis un travail
sur ces segments dans une étape au niveau des objets. À cela, (Cao et al., 2011) a ajouté
un traitement multi-échelle pour être capable de détecter aussi des plans d’eau dans les
images SWOT. Ici encore, on propose une approche basée sur deux étapes, inspirées de
(Tupin et al., 1998). On montre une vue d’ensemble de la méthode proposée dans la
Figure 7.

Détection de segments L’objectif de cette étape, résumée dans la Figure 8, est de
détecter des segments susceptibles d’appartenir à une rivière. Ces segments pourront
alors être utilisés comme entrées dans la partie haut niveau de la chaîne de traitement.
Ce détecteur combine deux tests afin de déterminer si le rectangle noté 1 dans la Figure 8
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Figure 7 – Vue d’ensemble de la méthode proposée pour la détection des rivières

(a) Sample image (Line orienta-
tion = 40◦

(b) Orientation = 0◦ (c) Orientation = 45◦

Figure 8 – Illustration du détecteur de segments. Une fenêtre rectangulaire est appliquée
à tous les pixels de l’image avec à chaque fois 16 directions et 5 largeurs testées. Ici, lors
du test des différentes orientations, on obtiendra un score plus élevé pour la direction
45◦ que pour 0◦. Une animation est disponible sur www.sylvainlobry.com/phd.

suit une distribution différente des rectangles 2 et 3.

Le premier de ces tests, D1 est un détecteur de segment basé sur le détecteur de
côtés proposé par (Touzi et al., 1988):

re(r1, r2) = 1−min

(
µr1
µr2

,
µr2
µr1

)
, (6)

où µrx est le paramètre de distribution dans le rectangle rx. A partir de ce test, on
obtient D1:

D1(r1) = min (re(r1, r2), re(r1, r3)) . (7)

Ainsi, D1 contraint d’avoir une réponse forte du détecteur de côtés entre les trois rect-
angles.

D2 est un détecteur basé sur la corrélation croisée normalisée entre r1 et r2, r3. Dans

www.sylvainlobry.com/phd
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(Tupin et al., 1998), il est défini ainsi:

D2(r1) = min (cc(r1, r2), cc(r1, r3)) , (8)

avec cc la corrélation croisée normalisée donnée par:

cc(rx, ry) =

√
nxny(µx − µy)2

1 + (nx + ny)(nxσ2x + nyσ2y)
, (9)

avec nx le nombre de pixels dans rx et σ2x la variance de rx.
Enfin, les deux détecteurs sont fusionnés avec une somme associative et symétrique

(définie par (Bloch, 1996)). Cela permet d’avoir un score, lié à la probabilité
d’appartenir à une rivière, pour chaque pixel. Ce score est ensuite seuillé, puis les
détections isolées sont enlevées et enfin les pixels détectés sont regroupés en segments.

Connexion et régularisation À partir des segments détectés, les traitements suiv-
ants sont effectués:

1. Une étape de connexion: les segments suffisamment proches (en termes de dis-
tance et d’orientation) sont connectés à l’aide de l’algorithme de Dijkstra (Dijk-
stra, 1959) défini sur une distance inversement proportionnelle aux scores définis
dans l’étape précédente. Ainsi, les connexions passent par des points susceptibles
d’appartenir à des rivières.

2. À l’étape précédente, de nombreuses connexions sont effectuées. L’objectif de
l’étape de sélection est de ne garder que celles qui ont une faible distance (soit
une forte probabilité d’appartenir à des rivières) et qui répondent à des a priori
que l’on peut placer sur la forme globale d’un réseau de rivières. Ces a priori sont
les suivants:

• un réseau de rivières contient peu de nœuds terminaux;

• peu d’intersections;

• peu de bifurcations;

• un réseau est principalement rectiligne;

• les connexions ne sont censées que remplir des trous, elles doivent donc être
courtes;

• les segments longs (détectés lors de la première étape) appartiennent très
probablement au réseau.

Ces différentes propriétés sont modélisées par un champ de Markov dont l’objectif
est de donner une étiquette à chaque connexion indiquant si celle-ci fait partie
du réseau. Celui-ci est optimisé avec un algorithme simple : ICM (Modes Con-
ditionnels Itérés). Cela nous permet de trouver un minimum local rapidement.
L’initialisation est alors un aspect important : elle est obtenue avec un seuil sur
les distances des connexions.
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(a) Image d’entrée (b) Détection de segments (c) Connexion

(d) Initialisation de l’ICM (e) Selection des connexions (f) Expansion

Figure 9 – Illustration des différentes étapes sur un extrait de l’image de la Camargue.

Méthode TPR FPR Taux d’erreur MCC(détection d’eau)
MRF (Markovian) 92.78% 1.64% 15.52% 0.9074
MRF + Rivières 93.08% 1.69% 15.46% 0.9080

Table 2 – Résultats pour l’image de la Camargue

3. À l’issue de l’étape précédente, le réseau est représenté par des chaînes de pixels
de largeur 1. Cependant, nous sommes d’abord intéressés par une classification
pixellique. Afin de l’obtenir, mais aussi d’améliorer le positionnement des rivières
détectées, nous proposons une approche simple:

(a) le réseau est étiqueté en composantes connexes;

(b) la boîte englobante de chaque composante connexe est débruitée à l’aide de
l’algorithme NL-SAR (Deledalle et al., 2015);

(c) l’image débruitée est seuillée par rapport à la radiométrie théorique de l’eau,
puis un étiquetage en composantes connexes est effectué;

(d) on garde les composantes connexes ayant une intersection avec le réseau
initial.

Résultats On montre dans la Figure 9 un extrait du résultat obtenu aux différentes
étapes de la méthode proposée et des résultats chiffrés dans la Table 2 (notons que les
résultats de MRF (approche Markov) seuls ne sont pas les mêmes que dans la Table 1 car
on utilise une initialisation présentée dans la suite du document pour les paramètres).
On peut noter que l’amélioration des performances est faible, mais cela est attendu
lorsque l’on considère la faible taille relative des rivières par rapport aux lacs.
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Figure 10 – Illustration du phénomène de speckle et des points brillants sur une image
acquise par TerraSAR-X (mode Stripmap) à Saint-Gervais, France (GPS: 45.910877,
6.705635). Les points correspondants au pont ont une radiométrie environ 10 fois
supérieure à celle des autres points.

Traitements SAR multi-temporels

Alors que le travail présenté dans la section précédente est dédié à la détection de l’eau
dans les images SWOT mono-dates, cette partie traite des piles temporelles d’images
urbaines.

Les images SAR sont corrompues par le phénomène de speckle qui peut rendre
leur interprétation complexe. Qui plus est, les images urbaines présentent souvent des
points brillants, caractéristiques des constructions humaines. Ces deux phénomènes
sont illustrés dans la Figure 10.

Il est possible de réduire l’influence du speckle en produisant une image multi-vue
(soit en moyennant sur une fenêtre, on parle alors de multi-vue spatial, soit en temps),
au prix d’une perte de résolution spatiale ou temporelle. Aussi, cette approche ne
donne pas de résultats satisfaisants dans les régions non-homogènes, fréquentes à cause
des points brillants notamment. Des approches utilisant des fenêtres adaptatives sont
alors souvent adoptées (Lee, 1981; Vasile et al., 2006). D’autres approches, non-locales,
comparent des patchs afin de moyenner des pixels similaires. L’idée originale de (Buades
et al., 2005) a été étendue par (Deledalle et al., 2011) au SAR, notamment pour la prise
en compte des statistiques particulières du speckle et des points brillants.

Une façon différente de procéder est de régulariser l’image. On peut par exemple
citer la variation totale (TV) qui pénalise les variations entre pixels voisins tout en
préservant les contours (Rudin et al., 1992). Les cibles fortes sont alors un problème,
comme illustré dans la Figure 11.

Dans ce travail, on s’intéresse au traitement de séries temporelles d’images SAR. Le
lancement récent de constellations de satellites permet d’obtenir des images d’un même
lieu à des fréquences importantes. Par exemple, en utilisant les satellites Sentinel-1A
et Sentinel-1B, il est possible d’obtenir une nouvelle image tous les 6 jours. Il est
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(b) Version corrompue de la figure (a)
et estimation au sens du maximum de
vraisemblance du signal en incluant ou en
excluant la cible forte.

Figure 11 – Illustration de l’effet de la présence d’une cible forte sur la régularisation.
Lorsque celle-ci est incluse dans le calcul du maximum de vraisemblance, la vraie ra-
diométrie est sur-estimée. En excluant la cible en question, l’estimation est proche de
la vraie radiométrie.

alors possible d’obtenir une meilleure régularisation, ou de faire de la détection de
changement entre ces différentes images.

Dans cette section, on propose de résoudre conjointement deux problèmes:

• un problème d’estimation (des radiométries non corrompues);

• un problème de détection (de cibles et éventuellement de changement).

Dans la suite, nous présentons 3 modèles issus de cette idée.

Modèles

L’idée à la base des modèles proposés est de considérer que la pile temporelle observée
est la somme de deux composantes. Ainsi, on cherche à expliquer une pile de T images
v où chaque image contient N pixels. On considère alors le modèle suivant:

∀t ∈ {1, . . . , T},∀i ∈ {1, . . . , N}, vt,i = ut,i · ξt,i (10)

= (bt,i + st,i) · ξt,i , (11)

où u est la radiométrie sous-jacente de la scène (soit la version non corrompue de v
que l’on cherche à obtenir), b est la composante de fond et s est la composante de
cibles fortes. L’idée générale de la méthode proposée est de chercher à obtenir ces
deux composantes conjointement au lieu de suivre une approche plus classique, où l’on
chercherait à obtenir u directement. Dans un cadre du Maximum a Posteriori, estimer
u directement serait exprimé comme une énergie à minimiser:

E(u) = DT(u,v) +R(u) , (12)
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où DT(u,v) est un terme pénalisant un modèle u qui ne représenterait pas fidèlement
l’observation v alors que R(u) encode une connaissance a priori sur les propriétés at-
tendues du modèle. L’approche de décomposition est une réponse au problème que
rencontrent les a priori spatiaux classiques lorsque ils sont utilisés en imagerie SAR: en
utilisant la décomposition présentée dans Equation 11 et en faisant l’hypothèse que les
deux composantes sont indépendantes, on obtient l’énergie suivante à minimiser:

E(u) = DT(b+ s,v) + βBG R(b) + βS R(s) , (13)

où βBG et βS permettent de pondérer les différents termes. En procédant ainsi, on est
capable de mettre des a priori différents sur le fond b et sur les cibles s. Dans la suite,
on présente trois modèles qui diffèrent par les a priori utilisés. L’a priori sur le fond
R(b) est noté ψ(b) et l’a priori sur les cibles R(s) est noté λ(s).

Un a priori classiquement utilisé est de dire que l’image devrait avoir une variation
totale faible. Alors que cet a priori n’est pas viable lorsque des cibles fortes sont présentes
dans l’image, on peut l’appliquer à la composante de fond, où de telles cibles ne sont
pas présentes. Aussi, on cherche à travailler sur des piles temporelles. On présente donc
une extension simple de la variation totale spatiale au domaine temporel:

TVα3D(b) =
T∑
t=1

∑
i∼j
|bt,i − bt,j |+ α

T−1∑
t=1

N∑
i=1

|bt+1,i − bt,i| , (14)

où i ∼ j indique que les pixels i et j sont voisins. On fait donc l’hypothèse que les
données sont parfaitement calibrées et recalées. En utilisant cette formulation, il est
possible de pénaliser les variations spatiales et temporelles de manière indépendante via
le paramètre α.

On peut définir une cible forte comme un point ayant une radiométrie largement
supérieure à celle des pixels environnants. D’après cette définition, on peut déduire
que la composante de cibles fortes devrait être parcimonieuse. La manière directe de
modéliser cette hypothèse est d’utiliser la pseudo norme L0:

||s||0 =

T∑
t=1

N∑
i=1

δ̄(st,i) , (15)

où δ̄(x) est égal à 1 si x 6= 0. Cependant, lorsque l’on utilise la pseudo-norme L0
comme a priori, l’énergie à minimiser est combinatoire (non-continue et non-convexe).
Typiquement, on utilise alors la norme L1. Cependant, on verra dans la suite que l’on
est capable, au prix d’une discrétisation du problème et dans le cas où on utilise TV
pour le fond, d’optimiser de manière efficace l’énergie définie avec L0.

En utilisant des fonctions différentes pour ψ et λ, trois modèles sont proposés:

• TVL0 Regularization (TVR): Dans ce modèle, on utilise ψ = TVα3D avec α
un nombre fini (et dans ce document, α = 1) et λ = ||.||0. Ce modèle est adapté
à la régularisation et la détection de cibles fortes.
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• TVL0 One Background (TV1BG): dans ce modèle, on utilise ψ = TV∞3D et
λ = ||.||0. En utilisant un poids infini pour la régularisation temporelle, aucune
variation dans le temps n’est permise à un pixel donné. Ainsi, ce modèle fait
l’hypothèse que les changements ont lieu uniquement dans les cibles fortes. En
procédant ainsi, on obtient un modèle avec une occupation mémoire moindre. Ce
modèle est particulièrement adapté pour la détection de cibles fortes.

• TVL0 One Change (TV1C): Dans ce modèle aussi, on cherche un fond seule-
ment (ψ = TV∞3D). Il est différent de TV1BG dans le sens où l’on ne cherche pas
seulement une composante de fond et une de cibles, mais aussi une parcimonie
dans les changements. Afin que le modèle reste utilisable, on se limite à 4 cas
pour les valeurs que peut prendre une cible forte dans le temps:

– elle peut être toujours égal à 0 (pas de cible forte);

– elle peut être constante et positive (pas de changement);

– elle peut être égale à 0 jusqu’à une date tapp puis être constante et positive
(apparition);

– elle peut être constante et positive jusqu’à une date tdisp puis être égale à 0
(disparition).

On peut ensuite définir une carte de changements c(s) comme:

ci(s) =



0 si ∃r > 0,∀t ∈ [1, T ], st,i = 0 ou st,i = r;

1 si ∃r > 0,∀t ∈ [1, tapp[, st,i = 0

et ∀t ∈ [tapp, T ], st,i = r;

2 si ∃r > 0,∀t ∈ [1, tdisp[, st,i = r

et ∀t ∈ [tdisp, T ], st,i = 0 ,

(16)

avec r > 0. Pour garantir la parcimonie des changements, on met un a priori
additionnel: λ(s) = ||s||0 + βC

βS
||c(s)||0, où βC est un poids. Par définition, ce

modèle est adapté à la détection de changement.

On interprète ensuite la décomposition comme un problème de détection: en un
pixel, pour une valeur de fond donnée, la détection de cible peut être vue comme un
test de rapport de vraisemblance généralisé (en remplaçant la cible par son estimation
au sens du maximum de vraisemblance) et la détection de changement comme un test
d’hypothèses hiérarchique, impliquant une succession de tests de rapport de vraisem-
blance généralisée.

Ce problème de détection est ensuite reformulé comme un problème d’estimation
(estimation des valeurs de cibles et du fond). Cette approche permet d’obtenir une
énergie à minimiser. D’après l’expression de la décomposition comme un problème de
détection, il est possible d’exprimer la valeur optimale des cibles comme une fonction
du fond, permettant d’avoir une énergie ne dépendant plus que d’une variable (le fond).
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Figure 12 – Fonction d’efficacité du récepteur (ROC, probabilité de détection (Pd)
contre Probabilité de fausse alarme (Pfa)) entre les version L0 et L1 de notre modèle
ainsi qu’une méthode basée sur une analyse locale (Lopes et al., 1993).

Comme l’a priori choisi est la variation totale, il est alors possible d’utiliser la méthode
d’optimisation proposée par (Ishikawa, 2003) afin d’obtenir le minimum global de notre
problème, après quantification des valeurs possibles du fond.

Cette méthode d’optimisation peut être coûteuse en termes de quantité de mémoire
utilisée. Afin d’obtenir un compromis entre la qualité du résultat et la mémoire néces-
saire, on propose un schéma d’optimisation par blocs avec recouvrement. Cette méthode
d’optimisation n’est pas dédiée à notre problème; elle peut être utilisée pour tous les
modèles prenant en compte un contexte spatial, comme les méthodes proposées pour la
détection de l’eau dans SWOT par exemple.

Applications et résultats

Les modèles proposés sont évalués dans les trois applications visées: détection de cible,
régularisation et détection de changement.

Détection de cible Une évaluation simple sur une image synthétique est proposée
dans la Figure 12. On note ainsi que pour la détection de cible notre modèle est
pertinent. Par ailleurs, cette évaluation nous permet aussi de conclure sur la pertinence
de ne pas relâcher la pseudo-norme L0 en norme L1.

Régularisation Des résultats visuels de deux modèles (TVR et TV1BG) sont montrés
et comparés à des techniques classiques (variation totale et Multi-vue temporel) dans
la Figure 13 sur une pile acquise sur Paris par TerraSAR-X en mode spotlight.

L’image multi-vue présente deux inconvénients majeurs: d’une part, il y a une perte
de résolution temporelle (on obtient seulement une image pour la totalité de la série).
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Figure 13 – Comparaison des différents résultats de régularisation.
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Figure 14 – Courbe ROC des performances de détection de changement sur une série
d’images de Saint-Gervais, France, acquise par TerraSAR-X en mode stripmap.

Aussi, on note une persistance des cibles fortes présentes sur seulement une image
(visible pour les péniches sur la Seine): leur radiométrie bien plus élevée que les autres
pixels fait qu’elles seront toujours visibles après moyennage.

En ce qui concerne la variation totale, la difficulté dans la gestion de ces cibles fortes
apparaît clairement. Cela valide la pertinence de traiter l’image comme une somme de
composantes.

Détection de changement Les résultats du modèle TV1C pour la détection de
changement sont évalués visuellement dans la Figure 15 et comparés à d’autres méthodes
dans la Figure 14.

Visuellement, on peut constater que les changements sont regroupés spatialement.
Cela n’est pas contraint par le modèle, et le fait de retrouver cette propriété dans les
résultats est un bon signe. Enfin, à part la partie supérieure du pont, les changements
sont plutôt bien détectés. Lorsque l’on compare nos résultats à l’état de l’art, on
peut remarquer que l’on s’approche de la méthode NORCAMA proposée par (Su et
al., 2014a). Cependant, il faut noter que ce modèle donne dans le même temps une
composante de fond et de cibles qui peuvent être utiles pour l’interprétation des images.
Qui plus est, les changements détectés ne sont pas les mêmes. Dans la première étape de
(Su et al., 2014a), un débruitage est effectué, introduisant une régularité spatiale. D’un
autre côté seuls les changements dans les cibles fortes (reflétant une activité humaine)
sont détectés par notre modèle. Ainsi, les résultats proposés par ces deux modèles sont
assez différents et complémentaires, et selon l’application visée l’un ou l’autre pourra
être préférable.

Conclusion

L’objectif principal de cette thèse est de fournir des méthodes fiables pour la classifi-
cation eau/terre dans les images SWOT. Cette tâche est critique pour l’estimation des
hauteurs d’eau. Suite à une division des objets d’intérêt en hydrologie selon leur forme,
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(a) Première image (b) Dernière (13ème) image

(c) carte de changement

légende: Pas de cible forte Cible forte et constante Disparition Apparition

Figure 15 – Résultats sur une série d’images de Saint-Gervais, France, acquise par
TerraSAR-X en mode stripmap.
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nous proposons deux familles de méthodes:

• les méthodes pour les objets grands et compacts. Les méthodes de classification
généralement utilisées ne sont pas adaptées à SWOT car elles font l’hypothèse de
paramètres de classes constants. La contribution majeure sur cette partie est un
cadre utilisant un modèle bien connu (champs de Markov avec un modèle de Potts
comme a priori) utilisant et estimant des paramètres de classe variables.

• une méthode pour l’extraction des rivières fines. Celles-ci ne respectent pas
l’hypothèse de régularité spatiale faite par une grande partie des algorithmes de
classification. A cet effet, on propose une combinaison de deux étapes: une étape
de bas niveau, pour la détection de segments et une étape de haut niveau, pour
leur connexion et régularisation.

Une partie de cette thèse a aussi été dédiée à l’implémentation opérationnelle des algo-
rithmes dans la chaîne de traitement du CNES.

Un des intérêts de la mission SWOT sera sa capacité à mettre à jour les données,
grâce au temps de revisite du satellite de 21 jours. Il sera alors intéressant d’explorer
le traitement multi-temporel des données. Néanmoins, de telles données n’étaient pas
disponibles au moment de la thèse. Ainsi, nous travaillons sur des méthodes similaires
à celles utilisées dans SWOT dans un contexte différent: les données multi-temporelles
en milieu urbain. On présente trois modèles issus d’une même idée de départ (la décom-
position de la série d’images) visant trois applications différentes: la régularisation, la
détection de cibles et la détection de changement. Ces modèles permettent d’effectuer
des traitements couramment demandés sur de grandes séries temporelles.

Perspectives Lorsque des données réalistes seront disponibles, il sera important de
vérifier l’adaptation des méthodes multi-temporelles proposées pour la détection de
l’eau dans le contexte de SWOT. Il sera aussi important de vérifier le comportement
des méthodes lorsque la réflectivité théorique sera différente de celle observée. Ce dernier
point devrait surtout impacter les méthodes ne proposant pas de ré-estimation.

Concernant la partie multi-temporelle, le modèle de détection de changement a deux
défauts principaux: il n’est pas capable de prendre en compte plus d’un changement par
pixel, et la probabilité de détection n’est pas constante avec le temps. Ce dernier point
est en cours d’étude. Il serait possible de considérer un nombre fini de changement,
mais la complexité algorithmique grandirait alors de manière exponentielle.



Chapter 1

Introduction

1.1 Context

Water is ubiquitous on Earth: according to (Gleick, 1993), 71% of Earth’s surface is
covered with water. However, 96.5% of the water present on Earth is saline water from
the oceans. The fresh water, which is the resource we all need to live only accounts for
2.5% of the total water present on earth (the remaining 1% accounts for other sources
of saline water, such as groundwater). Most of it (about 69%) is present in ice caps
and glaciers. Fresh groundwater represents 30% of the total fresh water, and lakes only
account for 0.26% (or 0.007% of the total water on Earth). While this resource is finite,
the growth of demand for water rose by more than the double of the population growth
over the last century according to an estimation from OECD1. This makes access to
safe water more difficult, with dramatic effects: according to the WHO, 3.4 million
people die annually from water-related diseases2. The situation is only getting worse:
according to UN, in 2025 two-thirds of the world’s population could face problems
concerning access to water3. Furthermore, the water cycle implies changes in water
locations. It then appears crucial to monitor the changes. Hydrologists mainly use
data acquired in situ, but these acquisitions are spatially sparse and remain expensive.

In order to obtain global measurements, they have started to use data from earth
observation satellites. For instance, we can cite the Jason missions (the latest satellite,
Jason-3 was launched on January 2016) which uses radar altimetry to measure the
topography of ocean’s surfaces (Lambin et al., 2010). In hydrology, the GRACE mission
(Tapley and Reigber, 1999) maps the gravity field of the Earth using a microwave
ranging system and has been used to monitor changes in the water storage (Ramillien
et al., 2008).

The upcoming Surface Water & Ocean Topography (SWOT) mission aims at
making the first global survey of the Earth’s water. It is a collaboration between the

1see http://www.oecd.org/publications/factbook/34416097.pdf
2see http://www.who.int/water_sanitation_health/takingcharge.html
3see http://www.un.org/waterforlifedecade/scarcity.shtml

http://www.oecd.org/publications/factbook/34416097.pdf
http://www.who.int/water_sanitation_health/takingcharge.html
http://www.un.org/waterforlifedecade/scarcity.shtml
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Centre National D’Études Spatiales (CNES) and NASA’s Jet Propulsion Laboratory
(JPL) with contributions from the Canadian space agency (CSA) and the United
Kingdom space agency (UKSA), following the historical collaboration on environmental
satellites between the first two agencies. The launch of the satellite is planned in
April 2021. To fulfill SWOT’s objective of measuring variations in the water elevation,
Synthetic Aperture Radar (SAR) is particularly adapted: it has the capability to
reliably acquire data (regardless of the weather or day/night conditions), a radiometric
stability which will provide comparable measurements over time and the interferometry
can retrieve the water elevation. Toward the goal of measuring inland water elevations,
one of the steps is to detect the water. In this collaboration, a precise distribution
of the algorithms development tasks has been proposed, and CNES is responsible for
the water detection part. Developing algorithms to detect the water in inland SWOT
images is the main objective of the presented work. Some methods were implemented
in the CNES processing chain prototype as part of the work of this PhD.

We have seen that one of the objectives of SWOT is to monitor changes, which
implies processing of data of the same site acquired at different dates. As realistic
multi-temporal data are not yet available, we have used SAR data coming from other
sensors, with the same family of processing methods but for different applications. We
studied applications of SAR in urban areas, and we will see in the rest of this document
that parts of this work could easily be transfered to SWOT data.

1.2 Contributions

Based on the context described in section 1.1 the contributions of this manuscript can
be divided in three parts:

• dedicated methods for water detection in SWOT images;

• methods for the processing of multi-temporal urban SAR data;

• generic methods for the processing of multi-temporal data and/or large data.

While the first and second ones target a specific application, the third type of
contribution groups the techniques developed for the processing of urban SAR data
that could be transfered to the processing of SWOT data.

Dedicated methods for water detection: Objects of interest in hydrology can
generally be classified based on their shape: either it is a large and compact object
(lake/reservoir) or it is long and thin (river). Therefore we have developed two methods
to account for these two types of objects.
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Contribution (1): Method for the detection of large water bodies

Due to the antenna pattern, varying water roughness and low Signal-to-noise
ratio (SNR) over land in SWOT images, the parameters describing the water
class and the land class can not be considered constant through the image. To
take into account this effect we present three methods for the estimation of the
water and land parameters:

• estimation based on the prior knowledge of the so-called Xfactor (using a
Digital Elevation Model (DEM), the known shape of the antenna pattern
and the SNR to retrieve the parameters);

• iterative estimation based on a quad-tree partitioning of the image;

• iterative dense estimation based on a Markov Random Field (MRF) model
on the parameters maps.

Classification is done jointly with the parameters estimation with an Ising model
(enforcing spatial compactness) which is optimized exactly.

Contribution (2): Detection of narrow rivers

We propose a method for the detection of thin water bodies in SWOT images
based on a two-step approach:

1. pixel-based detection of river segments;

2. connection and selection of the connections based on their contributions to
global properties of a river network.

The pixel-based detection is inspired from the work of (Tupin et al., 1998; Cao et
al., 2011) and the connection step uses Dijkstra’s algorithm. Finally the selection
of the connections uses a Markovian model to introduce priors on the global shape
of the river network.

Methods for the processing of urban SAR data: One of the main challenges
for the interpretation of SAR images is the presence of speckle which can be modeled
as a multiplicative noise. Many speckle filtering techniques have been developed but
most of them fail in the presence of strong scatterers (pixels with a radiometry an order
of magnitude higher than their surrounding) that are typically present in urban areas.
To this effect, (Denis et al., 2010) presented a decomposition technique which models
the image as a sum of two components: a background (which is spatially regular) and
a strong scatterers component, with only a few points. In this work, we propose an
extension of this model to multi-temporal series of images and applications for strong
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scatterers detection, change detection and regularization.

Contribution (3): A decomposition framework for multi-temporal se-
ries of SAR images

We present a general framework for the decomposition of multi-temporal series of
SAR images in two components: one or several backgrounds and strong scatterers
components for each image of the series. This formulation makes it possible to
put different priors on the strong scatterers components, and three models are
derived:

• TVR: one background and one strong scatterer components for each in-
put image which can be used for the regularization and strong scatterers
detection in time series;

• TV1BG: one background for the whole time series and one strong scatterer
image for each input image. This model is adapted for strong scatterers
detection;

• TV1C: one background for the whole time series and one strong scatterer
image for each input image. An additional constraint is put on the series
of strong scatterer images so it can be used for change detection.

We also propose a technique to use results from TVR or TV1BG for change
detection. One advantage of the proposed formulation is that it can be optimized
exactly once possible values for the background are quantized.
We also show that using a convex relaxation of the L0 pseudo-norm to the L1
norm in this context deteriorates the results.

Generic methods for the processing of multi-temporal and/or large data:
Some of the methods for the processing of urban SAR data could be transfered in the
case of SWOT when multi-temporal data become available. In addition to the simple
extension of Total Variation (TV) for a multi-temporal stack of images, which could be
used in an Ising model for the detection of large and compact objects, we have identified
the following contribution:

Contribution (4): Efficient optimization of MRF

Graphcut optimization techniques can be used to obtain the global minimum of
some energies (which is the case for contributions 1 and 3) but generally requires
a lot of memory which can prevent its application in real cases. To this effect,
we developed a simple technique to optimize by blocks. This method provides a
trade-off between the needed memory, the computation time and the quality of
the results. In the case of SWOT, it could be useful for the detection of water in
large images or large number of images in a multi-temporal series.
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Finally, we present in Figure 1.1 a diagram showing the different contributions pre-
sented in this thesis and how they are linked together.

1.3 Organization of this manuscript

This manuscript is divided in three parts. In a first part, we review both the data in
chapter 2 and the models in chapter 3. In chapter 2, we explain the acquisition process
and the statistics of SAR images that are used in this document. We also outline the
particular characteristics of SWOT. In chapter 3, we review the Bayesian models that
are at the core of the developed methods.

The second part is dedicated to water detection in SWOT amplitude images. After
reviewing methods from the literature that are adapted to the task of binary classifica-
tion in SAR images, we present in chapter 4 methods that take into account the class
parameters variations that occur in SWOT images. The chapter 5 is dedicated to the
detection of narrow curvilinear elements (representing rivers), and a two-step approach
is proposed.

A third part is dedicated to the processing of multi-temporal series of SAR images.
We show that the strong scatterers present in images of urban areas generally prevent
the direct application of classical regularization techniques, and we propose in chapter 6
a decomposition model that jointly detects these strong scatterers and estimate the
radiometry of the scene. As the proposed model can process multi-temporal series,
a change detection method is proposed in this chapter and evaluated in chapter 7,
along with the evaluation of the performances in regularization and strong scatterers
detection.
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Figure 1.1 – Schematic view of the work achieved during this PhD.



Part I

Image models





Chapter 2

Physics and statistics of SAR
images

2.1 Introduction

SAR images are corrupted by a phenomenon called speckle which is often regarded as
an undesirable multiplicative noise. While speckle can be an obstacle for both visual in-
terpretation and automatic image analysis, its distribution is precisely modeled thanks,
in particular, to the pioneering work of (Goodman, 1976).

The distribution of the data can then be precisely taken into account in the
processing methods, and it will be the case for the work we present in Part II and
Part III. Therefore, it is important to review the acquisition process and the statistics
of the observation that comes from it. It will be the topic of this chapter.

Organization of this chapter: in section 2.2 the acquisition process of SAR ampli-
tude images is briefly recalled. As Part II is dedicated to the SWOT mission, we review
in section 2.4 the specific characteristics of the Ka-band Radar Interferometer (KaRIn),
SWOT’s main instrument. Finally, we present the origin of speckle and the distribution
of the data that will be used in the rest of this document in section 2.3.
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Figure 2.1 – Schematic view of the main geometrical parameters of a side-looking
RADAR system.

2.2 Acquisition

The basic principle of RAdio Detection and Ranging (RADAR) imagery is to emit an
electromagnetic wave with a given central frequency f0 in a given direction called the
Line of Sight (LOS) and measure the echo of the backscattered wave. The LOS is defined
by two angles: the squint angle (the angle formed by the LOS and the perpendicular
to the trajectory) and the incidence angle θ (the angle formed by the LOS and the
nadir). When an electromagnetic wave is emitted, it illuminates the area on the ground
located within the antenna lobes. The sensor then records the backscattered waves,
along with the time since the emission. The principal antenna lobe, along with the
incidence angle and the LOS are represented in Figure 2.1. The time delay between the
emission and the reception of the wave gives the localization of the object on the ground
in the range direction. By recording all the echoes coming from a given emission, it is
possible to construct one line of the image in the range direction. After a given time
step, the system can send a new electromagnetic wave and acquire a new line in the
range direction. By repeating this process, the image is constructed.

Range resolution: The spatial resolution in the range direction along the LOS (pro-
vided that the signal is a chirp of central frequency f0 and bounded by

[
f0 − B

2 ; f0 + B
2

]
)

is given by:
δr =

c

2B
, (2.1)
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where c is the speed of light. This resolution can be projected on the ground with
respect to the incidence angle θ (making the hypothesis that the ground is flat):

δgr =
c

2B sin(θ)
(2.2)

Azimuth resolution: For a real aperture imaging RADAR system, the resolution
in azimuth depends on the wavelength λ0, the distance between the antenna and the
object to be imaged R and the length of the antenna L:

δaz ∝
λ0R

L
, (2.3)

Therefore, the larger the antenna, the better the resolution is. However, to obtain a
resolution in the order of 10m, it would require an antenna whose length is in the order
of the kilometer!

To cope with this problem, it is possible to exploit the fact that a point on the
ground backscatter for several pulses as the satellite go forward. SAR systems use
this property in order to simulate a much longer antenna, yielding a much better
azimuth resolution. The process of synthesizing the image goes beyond the scope of
this document, and we refer the reader to (Deledalle et al., 2018) for details about
the technique. However, it is important to understand that the resolution will depend
on the time period a point is present within the antenna pattern. It will also depend
on the squint angle: this explains why a single sensor can provide data with different
resolutions: in some acquisition modes, the squint angle is fixed, while in others it
moves to obtain a trade-off between the spatial coverage of the image and the resolution.

A SAR image is complex with an amplitude and a phase for each pixel. Both the
amplitude or phase differences between images can be exploited for different applica-
tions. In this work, we will deal with amplitude images. An example of such an image
can be seen in Figure 2.2. In this case, the satellite acquired the image from the left,
the horizontal axis is the range direction and the vertical axis is the azimuth direction.
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(a) Image of Paris (b) Crop of the center of the image

Figure 2.2 – Amplitude SAR image of Paris acquired by TerraSAR-X in spotlight HR
mode (resolution: 1m × 1m) between 01/24/2009 and 04/09/2010. Notice the strong
variations due to the speckle.

2.3 Statistics of SAR data

Single-look complex image The speckle that can be observed in a SAR image (see
Figure 2.2) is due to the coherent summing of the response of the multiple elementary
targets in the resolution cell. This is illustrated in Figure 2.3. To model the distribution
of the backscattering vector resulting from the coherent summing of the contributions,
(Goodman, 1976) proposed the fully-developed speckle model when the following hy-
potheses are met:

• the number of elementary targets in the resolution cell is large;

• the phase and the magnitude of each target are independent random variables;

• the phase of each target is uniformly distributed on [−π;π].

In a stationary area, the large number of elementary targets makes it possible to apply
the central limit theorem. Therefore, the resulting response z of a resolution cell follows
a zero-mean complex circular Gaussian distribution of variance σ2 which is a function
of the normalized backscattering coefficient σ0:

p(z|σ2) =
1

πσ2
e−
|z|2

σ2 . (2.4)

The amplitude vA = |z| then follows a Rayleigh distribution of parameter µA = σ:

p(vA|µA) =
2vA
µ2A

e
−
(
vA
µA

)2

, (2.5)
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Figure 2.3 – Multiple elementary targets are generally present within a resolution cell,
and each of them backscatter the signal in a different way. The resulting backscattered
vector is the coherent sum of each of these individual responses.

and the intensity vI = |z|2 follows an exponential distribution of parameter µI = σ2.
Since vI = v2A, an amplitude image and an intensity image carry exactly the same
information. In this document, we will use amplitude data. As explained in chapter 3,
many image models use the negative log-likelihood of an observation vA, which gives:

− log p(vA|µA) = 2 log(µA)− log(2vA) +

(
vA
µA

)2

. (2.6)

An equivalent formulation, highlighting the multiplicative nature of speckle is to write:

vA = µA × ξ , (2.7)

(a) Rayeigh likelihood (µA = 5) (b) Rayeigh negative log-likelihood
(µA = 5)

Figure 2.4 – Rayleigh likelihood and log-likelihood distributions. Note that the mode
of the distribution is not µA.
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(a) Rayeigh-Nakagami likelihood (µA = 5) (b) Rayeigh-Nakagami negative log-likelihood
(µA = 5)

Figure 2.5 – Likelihood and log-likelihood distributions of Rayleigh-Nakagami. Note
that the mode of the distribution is closer to µA when L is larger.

where ξ is a Rayleigh distributed random variable of parameter µ = 1.

We show the distributions of the likelihood (Equation 2.5) and the negative log-
likelihood (Equation 2.6) for an amplitude image with µA = 5 in Figure 2.4.

Multi-looking It is possible to obtain a "multi-look" version of an image by averaging
intensity samples in the spatial or temporal domain. For a homogeneous area, assuming
fully developed speckle, the resulting intensity image then follows a Gamma distribution.
When converting this image to amplitude, it follows a Rayleigh-Nakagami distribution:

p(vA|µA) =
2
√
L

Γ(L)µA

(
vA
√
L

µA

)2L−1

e
−
(
vA
√
L

µA

)2

. (2.8)

Note that when L = 1 (that is, no multi-looking), Rayleigh-Nakagami is equivalent to
the Rayleigh distribution. By taking the negative log-likelihood of this distribution, we
get:

− log p(vA|µA) = − log(2)− 2L log(
√
L) + log(Γ(L))− (2L− 1) log(vA)

+ 2L log(µA) + L

(
vA
µA

)2

. (2.9)

The multi-looking operation reduces the effect of the speckle as it can be seen in Fig-
ure 2.5 at a price of a coarser resolution.

One remarkable property of the Rayleigh-Nakagami distribution is that its coefficient
of variation γ (which is the ratio between the standard deviation and the mean) only
depends on the number of look (Jean-Marie Nicolas, 2012):

γ =

√
Γ(L)Γ(L+ 1)

Γ(L+ 1
2)2

− 1 ≈ 1

2
√
L

(2.10)
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Figure 2.6 – Likelihood of the Fisher Tippett distribution for µ̃A = 5.

This reflects the multiplicative nature of the speckle: the variations will be more present
in areas with a higher mean radiometry.

Logarithm of an image The speckle can be transformed to an additive contribution
by applying a logarithm to the signal. The logarithm of the intensity ṽI = log(vI) then
follows a Fisher-Tippett distribution of parameter µ̃I = log(µI):

p(ṽI |µ̃I) =
LL

Γ(L)
eL(ṽI−µ̃I) exp(−LeṽI−µ̃I ) . (2.11)

The distribution for different values of L is shown in Figure 2.6. The shape of this
distribution features a left heavy-tail, as opposed to the Rayleigh-Nakagami which has
a right heavy-tail. It can be considered close to a Gaussian distribution when the
number of looks is large. It is then possible to apply methods developed for additive
gaussian noise. However, a debiasing step is then required (Xie et al., 2002a).

Strong scatterers We have seen that the backscattered vector for a resolution cell
is the result of a coherent summing of the multiple targets, as illustrated in Figure 2.3.
However, in some cases an elementary target has a backscattering value much higher
than the others in the resolution cell. These situations typically arise where corner-
type geometrical structures are present. In these cases, most of the emitted signal
is backscattered towards the antenna. This is illustrated in Figure 2.7. Figure 2.7(a)
shows a schematic view in the range direction and Figure 2.7(b) shows a corner reflector
(which is a canonical target) on the field. As "near-perfect" corners are typically not
present naturally, these strong scatterers are mostly present in urban areas, for man-
made structures. In pixels where a strong scatterer is present, the statistics presented
in this section are not the most relevant. While the backscattered vector is still the
result of a coherent sum, the elementary target corresponding to the corner has a value
much higher and is generally stable. Therefore, the resulting vector only fluctuates a
little over time compared to pixels where no strong scatterers is present.

In the cases where a strong scatterer of cross section s is present in a homogeneous
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(a) Schematic view of a corner resulting in a
bright scatterer

(b) Corner reflector on the Eiffel Tower (Flora
Weissgerber, ONERA) (Weissgerber, 2016)

Figure 2.7 – Corner reflector: most of the signal is reflected toward the antenna, resulting
in a bright point.

region of mean intensity µI , it is recommended to use the Nakagami-Rice distribution
(Tison and others, 2004):

p(vI |µI) =
1

µI
exp

(
−vI + s2

µI

)
I0

(
2

√
vIs2

µI

)
, (2.12)

where I0 is the first-kind modified Bessel function.

Summary: Statistics

In this section, we presented the statistics of the different SAR data that will be
used in this document. The distributions are the following:

• Single-Look Complex (SLC): complex circular Gaussian

• amplitude of the SLC: Rayleigh;

• amplitude (multi-looked): Rayleigh-Nakagami;

• logarithm of the multi-looked amplitude: Fisher-Tippett;

• presence of strong scatterer s: Nakagami-Rice.
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Name Band f0 (in GHz) wavelength (in cm) incidence angle (in ◦)
SWOT Ka 35.75 0.86 0.6 - 3.9

TerraSAR-X X 9.65 3.11 15 - 60
Sentinel-1 C 5.4 5.55 20 - 46
Biomass P 0.435 68.92 23+

Table 2.1 – Frequency and corresponding wavelength for popular SAR systems.

2.4 Particularities of SWOT

Besides its interferometric capacity, SWOT’s main instrument KaRIn has two main
particularities: a high frequency (f0 = 35, 75GHz)/short wavelength (8.6mm) and a
near-nadir incidence angle (from 0.6◦ to 3.9◦). SAR systems generally use lower fre-
quencies and higher incidence angle as it can be seen in Table 2.1.

SWOT provides two modes: the Low Rate (LR) mode, dedicated to oceanography
and the High Rate (HR) mode dedicated to hydrology. The LR mode features onboard
unfocused SAR processing steps and a multi-looking to obtain a 1km2 grid and reduce
the output data rate. However, in this work, we are interested in the HR mode dedicated
to hydrology. In this mode there is only an onboard pre-summing of 2 to keep a good
resolution (∼ 5m in azimuth, 70m to 10m in range) at the price of a high output data
rate: ∼300Mbps (Fjørtoft et al., 2010). The difference in the range resolution between
near-range (70m) and far-range (10m) is not surprising considering the ratio between
the near-range and far-range incidence angle and Equation 2.2.

Using Ka-band has the following implications:

• sensitivity to roughness at finer scales (which is useful to have signal from water
surfaces);

• meteorological conditions will have a higher influence than for lower frequency
systems;

• it features a weaker penetration into vegetation and snow.

With acquisition parameters close to those of SWOT, experiments have shown that
the normalized backscattering coefficient σ0 of the water is generally higher than the
one of land at small incidence angles. (Fjørtoft and others, 2014) provides a review of
such studies, along with new experiments. According to it, we can expect a water/land
contrast of 10 to 20 dB in the range covered by SWOT, except for very low wind speeds.
It should be noted that the SNR is very low in SWOT images due to power constraints
as the system operates all the time. Therefore the signal from land surfaces is often
at or below the thermal noise floor. The so-called noise-equivalent σ0 is around 0dB
for SWOT (in the center of the swath) whereas it is in the order of -20dB to -30dB
for most space borne SAR systems. The σ0 of water drops faster with incidence than
the σ0 of land. However, water is generally quite flat, whereas land surfaces may have
strong topography.
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Figure 2.8 – Variations of the water and land parameters with respect to the range
direction in a simulated SWOT image. Note that the variations are much stronger in
the water class than in the land class.

Another type of variation in the observed radiometry comes from the antenna pat-
tern. In all SAR systems, the radiometry change in the range direction according to
a known pattern. This can be usually corrected (see (Bachmann and others, 2010) for
the case of TerraSAR-X). However, in the case of SWOT, the land class is dominated
by thermal noise that is not shaped by the antenna pattern. This evolution of the
radiometry in the range direction is therefore not the same for both classes, as it can
be seen in Figure 2.8. A global correction of the antenna pattern would yield variations
in the land class. Therefore, the antenna pattern effect should not be corrected before
land/water classification, but taken into account by the classification method.

The low incidence angle directly impacts the presence of layover. This phenomenon
occurs as soon as the terrain slope exceeds the incidence angle. As the incidence angle
used in SWOT is very low, we can expect a lot of layovers in the images. This is shown
in Figure 2.9.

The effect of land/water layover on water detection is expected to be small, as
the weak land backscattering adds to the strong water backscattering, making water
even brighter. However land/land layover can result in areas with a strong radiometry,
which can lead to false water detection.

The backscattering coefficient of the water surfaces also presents variations with
respect to wind speed (as it has an effect on the surface roughness). If the wind speed
is close to zero, there is little or no signal due to the specular reflection. From (Fjørtoft
and others, 2014), it appears that a wind speed of 2.5m/s is the most favorable
condition with a σ0 approaching 20dB. For higher wind speeds, the σ0 of water falls of
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(a) Near nadir incidence angle (b) Higher incidence angle

Figure 2.9 – Effect of the incidence angle on the extent of layover.

(in the order of 10dB at 10m/s).

To sum up, the variations in the radiometries will mainly depend on three elements:

1. the incidence angle, antenna pattern and SNR;

2. the land topography (layover);

3. the water roughness that is closely related to wind speed.

There exists a priori knowledge on the first two points. The incidence angle, antenna
pattern and SNR are well known. Also, the topography can be approximately known
from a DEM. However, the wind speed close to the water surface has strong local
variations and cannot be precisely predicted from available meteorological data. The
variations due to the incidence angle, antenna pattern and the topography are encoded
in the so-called Xfactor. It links the theoretical σ0 of the classes to the received signal
using (in dB):

Preceived = Psignal + Pnoise (2.13)

= Xfactor× σ0 + Pnoise . (2.14)

It should be noted that in the case of SWOT, water detection is actually not carried
out on one single amplitude image, but rather on a combination of the images that
are acquired simultaneously by the two antennas, mainly to reduce the thermal noise
floor, and thereby increase the effective water/land contrast. The most straightforward
way is to use the interferometric product, but it is slightly better to use the so-called
coherent power, which is obtained by first phase-flattening the two SLC images with
respect to a reference DEM (to approximately align their phases), then average them
coherently, and take the power (square of the absolute value). For the latter, the gain in
water/land contrast can be up to 3 dB (if the land σ0 is at least 3 dB below the noise-
equivalent σ0, and the phase-alignment is close to perfect). Taking the square root of
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the interferometric product or the coherent power, we can assume the same marginal
distributions as described for amplitude images in section 2.3, and in what follows we
will for simplicity refer to any of these images as amplitude images.

Summary: Particular characteristics of SWOT

As the objective of SWOT is to be able to do SAR interferometry on water (where
there is usually almost no signal in conventional SAR images), it features unusual
characteristics: a very low incidence angle (0.6◦ to 3.9◦) and a high frequency
(Ka band). Due to power constraints, it has a low SNR, especially over land.
These characteristics have to be taken into account in the processing methods.



Chapter 3

Image models

3.1 Bayesian modeling

In this PhD, we consider an image formed by a finite set of sites Si ⊂ Zd, with d the
dimension of the image (typically, d ∈ {2, 3}). To each site s ∈ Si is associated a ran-
dom variable Us that has a value in E. E can be a set of labels (e.g. E = {1, . . . , qmax}
when considering classification), or graylevels (e.g. E = {0, . . . , 255} when considering
discrete regularization, E ∈ R when considering continuous regularization). Note that
the domain of E is independent of the one of the values vs of the observed image itself,
which will always be R+ in this document (as we are considering amplitude images
with positive values).

An image processing task can generally be described as finding the "best" realization
û = {ûs} of a random field U . This is expressed as û = arg max

u
p(U = u). In a

similar way, we can define an observation v = {vs} as the realization of a random field
V = {Vs}.

If we take into account an observation V , the problem can be expressed as:

û = arg max
u

p(U = u|V = v) . (3.1)

In Bayesian statistics, p(U = u|V = v) is called the posterior probability and can be
linked to the likelihood p(V = v|U = u) and a prior p(U = u):

p(U = u|V = v) =
p(V = v|U = u)p(U = u)

p(V = v)
. (3.2)

The Maximum a posteriori (MAP) estimator of a problem can then be expressed as:

û = arg max
u

p(U = u|V = v) = arg max
u

p(V = v|U = u)p(U = u)

p(V = v)
(3.3)

= arg max
u

p(V = v|U = u)p(U = u) . (3.4)

Note that when selecting the maximum value with respect to u, p(V = v) is constant.
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The model is then defined by the choice of the likelihood, which is related to the
statistics of the data and the prior. The prior can either:

• be uniform; in this case, the solution is a Maximum Likelihood Estimate (MLE);

• take into account statistics of the solution independently for each pixel;

• take into account neighbors at the pixel level and model spatial properties;

• describe the general shape of the solution.

Practical example of the MLE and the statistic prior and a review of different methods
for the description of the general shape of the solution are given in section 4.2. Taking
into account the neighbors can be described by MRF which is explained in section 3.2.
We will see that while spatial interactions are only explicitely expressed at the pixel
level, higher-level interactions are possible thanks to the Hammersley-Clifford theorem.

3.2 Markov Random Fields

Since the seminal work of Geman and Geman (Geman and Geman, 1984), MRF have
become a classical way of modeling problems including spatial information. This formal-
ism has proven to be efficient for image processing tasks that need to take into account
spatial relationships (e.g. regularization, inpainting or classification (Li, 2009)).

In this section, we go through the basis of MRF, and we review some optimization
techniques.

3.2.1 Notation and definitions

To include spatial information in a model, the neighborhood of a site has to be defined:

Ns = {t} with

{
s 6∈ Ns
t ∈ Ns =⇒ s ∈ Nt

(3.5)

We can now form the cliques: a clique is either a singleton in Si or a set of sites
all neighbors with each others. Usual neighborhoods in 2D signals are illustrated in
Figure 3.1. In the following, the set of cliques is noted C.

Local interactions between sites in a clique are modeled using clique potentials Pc
depending on the state of the sites. This allows for the definition of the global and local
energy of the system for a given configuration:

Global energy: P(u) =
∑
c∈C
Pc(us, s ∈ c) (3.6)

Local energy on site s: Ps(u) =
∑

c∈C/s∈c

Pc(us) (3.7)
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(a) Singleton (b) 4-connectivity (c) 8-connectivity

Figure 3.1 – Illustration of the usual neighborhoods for a single node (the central one)
in the 2D case.

We can define the random process U = {Us} as a MRF with u = {us} a realization
of this process if and only if:

• ∀u ∈ Ω, p(U = u) > 0 (no forbidden configuration);

• ∀s ∈ Si,∀u ∈ Ω, p(Us = us |{Ut = ut, t 6= s}) = p(Us = us|{Ut = ut, t ∈ Ns})
(contextual information is contained only in the neighbors).

This means that U is a MRF if and only if the local conditional probability in one given
site only depends on the configuration of its neighbors.

Using the Hammersley-Clifford theorem, we have an equivalence between a Gibbs
field (the probability of a given configuration depends of the sum of cliques potentials)
and a MRF. This allows to write:

p(Us = us|{Ut = ut, t 6= s}) =
exp(−Ps(us|{ut, t ∈ Ns}))∑

e∈E
exp(−Ps(e|{ut, t ∈ Ns}))

. (3.8)

In the image processing tasks that are considered in this document (classification,
regularization), we start from an observation v (the image to be classified, the image to
be regularized) that we can model as a realization of a MRF V and we want to estimate
a result u (the classification, the regularized image) that we will model as a realization
of another MRF U .

In order to link these two processes, we saw in section 3.1 that one can use the MAP
criterion with Bayes theorem:

p(U = u|V = v) ∝ p(V = v|U = u)p(U = u) . (3.9)

As U is supposed to be a MRF, we have:

p(U = u) =
exp(−P(u))

Z
, (3.10)

with Z a normalization factor. From Equation 3.9:

p(U = u|V = v) =
exp (−(− log p(V = v|U = u) + P(u)))

K
=

exp(−E(u))

K
, (3.11)
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where E(u) = − log p(V = v|U = u) + P(u) is the energy of the system. It is a
sum of the negative log-likelihood of the data − log p(V = v|U = u) and a prior
P(u) = − log(p(U = u)). The negative log-likelihood is also called the data fidelity
term, and will also be noted DT(v,u) in the following. From Equation 3.11 we can see
that maximizing p(U = u|V = v) is equivalent to minimizing the energy E(u).

Summary: Modelizing a problem using MRF

To sum up, using MRF to solve image processing problems boils down to the
following energy minimization:

E(u) = DT(v,u) + P(u) . (3.12)

The term DT(v,u) describes the acquisition process which depends on the imag-
ing system and the term P(u) is a prior on the result depending on the solution
we are seeking (i.e., this term is application dependent). The prior at one site s
should only involve s and its neighbors.

In the following, the notation of p(V = v|U = u) and p(U = u) will be shortened
to p(v|u) and p(u) respectively. The next step is to minimize the energy E(u). In the
next subsection, we review methods dedicated to this task.

3.2.2 Optimization

Optimization of E is not straightforward. The energy may be non-convex, and even
when the problem is discretized, the number of solutions is |E||Si| preventing the use of
exhaustive search approaches on any real problem.

Two techniques are widely used to optimize MRF: Iterated Conditional Modes (ICM)
and Simulated Annealing (SA). We also present methods based on graph-cuts that work
for certain types of MRF.

Iterated Conditional Modes (ICM) In this method, a solution is found by it-
eratively selecting the values that give the lowest energy at each pixel based on
the current configuration of the image. This method is described in algorithm 1.
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Algorithm 1: Iterated Conditional Modes
Data: Observed image v
Result: Model u
u = initialize();
changed = true;
while changed do

changed = false;
foreach ui in u do

prev = ui;
/* Select ui = q ∈ E s.t. E(u) is the smallest. */

ui = select_optimal_at_i(u, v);
if prev 6= ui then

changed = true;

While this method is simple, it only gives a local minimum, highly dependent of the
initialization.

Simulated annealing (SA) This method, inspired by the annealing process in met-
allurgy involving a phase of heating followed by a controlled cooling (Geman and Geman,
1984), uses a temperature that decreases during the algorithm. At each step, a new
solution is proposed. But instead of choosing the solution that will minimize the energy
as for the ICM, it will be chosen according to a sampler (either Gibbs or Metropolis)
taking into account the temperature. Their behavior is close to an uniform sampling
when the temperature is high while a low temperature will lead to the selection of the
solution minimizing the local energy. Doing so makes it possible to escape from local
minima: during the first iterations, it explores the space search, only to converge toward
a solution when the temperature decreases. The general principle of the algorithm is
described in algorithm 2.
Algorithm 2: Simulated Annealing
Data: Observed image v
Result: Model u
u = initialize();
changed = true;
temp = initial_temp;
while changed do

changed = false;
foreach ui in u do

prev = u;
ui = select_element_in(E, temp);
/* This step can decrease the energy */

temp = decrease_temp(temp);

While there is a theoretical guarantee to find the global minimum, it is only for
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Figure 3.2 – Illustration of the correspondence between the cut and the energy in a
simple 1D case with the binary Ising model.

an infinitely slow cooling scheme. In practice, we do not have a guarantee to find the
global optimum. Furthermore, depending on the cooling scheme, it can take a long
time to find a solution.

Graph-cuts In practice, we do not have the guarantee neither with ICM nor with
SA to obtain the global minimum. To address this problem, several methods using
graph-cuts have been developed. The general principle is to build flow networks (that
is a graph with two terminal nodes: the source S and the sink T such that there is a
bijection between the set of S-T possible cuts in the graph and the set of solutions of
our problem. An S-T cut in a flow graph can be viewed as a partitioning of the nodes
in the graph in two subsets: one which contains the source, and one which contains the
sink. The weights on the edges are set so that the value of a cut corresponds to the
energy of the solution for the original problem. This correspondence makes it possible
to find the global optimum for some energies using a min-cut/max-flow algorithm. The
global process is illustrated in Figure 3.2 for a simple example and the Ising model
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defined in Equation 3.14. In the following we will only consider priors on 2 sites, that
we will note ψ(x, y) i.e.:

− log(p(U = u)) = β
∑
{s,t}∈C

ψ(us, ut) (3.13)

Binary graphcuts The first approach, introduced in (Greig and others, 1989), finds
the global optimum of a MRF with binary output |E| = 2 given that the prior is the
Ising model:

E(u) =
∑
s

DT(vs, us) +
∑
(s,t)

βψ(us, ut) (3.14)

with:

ψ(x, y) =

1 if x 6= y

0 if x = y .
(3.15)

Any S-T cut in the graph presented in Figure 3.2 gives a solution u0 with the value of
the cut corresponding to its energy E(u0). Therefore, finding the min-cut in this graph
will give the exact solution to our minimization problem. It is then possible to use one
of the several algorithms developed to find min-cut in graphs.

In (Kolmogorov and Zabin, 2004), an extension of (Greig and others, 1989) to any
sub-modular prior (ψ(0, 0) +ψ(1, 1) ≤ ψ(0, 1) +ψ(1, 0)) has been proposed. It uses the
additive theorem saying that the sum of two graph-representable functions is graph-
representable.

Graphcuts for multi-label problems Depending on the prior, several graphcut-
based methods have been developed:

• if the prior is a semi-metric: α− β-swap (Boykov et al., 2001), giving an approx-
imate solution.

• if the prior is a metric: α-expansion (Boykov et al., 2001), which has a lower
complexity than α− β-swap, but still gives an approximate solution.

• if the prior is convex: (Ishikawa, 2003) gives the exact solution provided that E
is finite.

In the following, we describe the method introduced by (Ishikawa, 2003) in the
case of the anisotropic Total Variation prior. Introduced by (Rudin et al., 1992), TV
corresponds to ψ(us, ut) = |us − ut| and penalizes variations between the values of
neighboring pixels while allowing for sharp edges. It will be used in chapter 6.

The graph construction is represented in figure 3.3. The graph is composed of several
layers, each of them having one node for each of the m pixels of the image. Each layer
represents a possible value for the regularized image. Neighboring nodes are connected
by pairs of arcs. The source (S) and the sink (T ) are also connected to the first and
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T

S

Figure 3.3 – Graph construction based on (Ishikawa, 2003).

last layers. Each node is connected with a weight of (qn+1− qn)β for horizontal (black)
arcs (see zoom in (3.3)), DT(vi, qn) for top-down (blue) arcs (with vi the value of the
pixel corresponding to the node being defined), and∞ for bottom-up (red) ones, where
q1 , . . . , qmax are the possible values for us.

An S-T cut in the graph corresponds to a unique solution: each pixel will have
exactly one vertical edge in the cut, giving the corresponding inferior value to this
pixel. Furthermore it can be shown that the value of a cut corresponds to the energy of
the associated solution. The likelihood in one pixel is given by the vertical edge, while
the prior penalization is ensured by horizontal ones. Therefore, finding the S-T cut of
minimal cost in this graph gives the optimal solution.

Min-cut algorithms At the core of all graphcut-based optimization techniques is the
computation of the min-cut. Indeed, the graphcut construction can be seen as a simple
reformulation of the original problem, with the optimization to be done. While out of
the scope of this thesis, we present the general principle and a few algorithms that can
be used for the min-cut computation. An extend review of classical algorithms solving
this task can be found in (Boykov and Kolmogorov, 2004) These algorithms are often
called min-cut/max-flow algorithms as the max-flow min-cut theorem states that the
value of the minimum cut in a flow graph is also the value of the maximum flow that
can go from the source to the sink. The flow of a path from S to T is a number which
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is equal to the minimum weight among the edges of the path. The maximum flow is
then the maximum value for all the paths from the source to the sink.

Two main classical algorithms try to find the maximum flow:

• In (Ford and Fulkerson, 1956). It is based on augmenting paths, that is paths with
available capacity on all edges of the path (or not saturated). It iteratively selects
augmenting paths and saturates them. The crucial step is to find augmented paths
which is done with a residual graph. The computational cost of the classically
used variant of (Edmonds and Karp, 1972) is in O(V E2) where V is the number
of vertices and E the number of edges.

• In (Goldberg and Tarjan, 1988), another type of algorithm (named "push-relabel")
is proposed. It also works on a residual graph, but instead of finding paths with
available capacity, it only works on one vertex at a time by looking at its neighbors.
Its computational cost is in O(V 2E) for the basic version making it more efficient
than the Ford–Fulkerson algorithm. Efficient selection rule can lead to a O(V 2E

1
2 )

complexity.

Most max flow algorithms are based on one of these algorithms, which is also the case
of (Boykov and Kolmogorov, 2004) (based on augmented paths). It has a complexity of
O(EV 2|C|) where |C| is the value of the minimum cut. While it is theoretically not as
efficient as previous approaches, it is in practice faster for image processing applications.
Indeed, it exploits the particular shape of the graph built for an image, which is very
regular. Several improvements to this version have been proposed; for instance, (Liu
and Sun, 2010) propose a parallel implementation.

In the following, results requiring the computation of a minimum flow have been
computed using the implementation provided by (Boykov and Kolmogorov, 2004).

Summary: Optimizing MRF

The optimization of MRF is a widely studied problem. Along with classical
methods such as ICM ans SA, more recent works propose to use graph theory to
this end.
When using classical models for the prior (such as Ising in the binary case or TV
in multi-label problems), these methods lead to a global optimum for quantized
values.
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Part II

Water/land classification
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For hydrological applications, the main objective of the SWOT mission is to estimate
water elevation. It uses single-pass SAR interferometry (thanks to its two antennas)
for this purpose. However, estimating water elevation from the interferometric data
requires to know where the water is. Water detection in SWOT images is the object of
this part.

Our goal is to use a SWOT amplitude image v to obtain a map of water areas u
where:

ui =

1 if i should be classified as water and

0 if i should be classified as land.

This task of binary classification of an amplitude image has been widely studied and a
state of the art is presented in section 4.2. However, in the case of SWOT, there are
two specific problems that need to be addressed:

• The water and land classes parameters are not constant throughout the image.
While most classification algorithms assume constant parameters, this hypothesis
does not hold in the case of SWOT. We propose an adaptation of classical algo-
rithms in order to take into account non-constant parameters and several methods
to estimate them in chapter 4.

• Many classification algorithms consider spatial regularity as a prior on the result,
in order to limit the effect of speckle that is present in SAR images. However in the
case of hydrological applications we have to detect rivers which are narrow curvi-
linear objects, violating the hypothesis of spatial compactness. While chapter 4
presents general methods for classification that are adapted to the detection of
lakes and other large water bodies, the detection of narrow rivers is studied in
chapter 5.
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Chapter 4

Water/land classification

4.1 Introduction

Binary classification, which is closely related to detection, is a widely-studied problem
and it will be the topic of section 4.2 where a survey of methods dedicated to this task
is presented with the exception of the MRF.

Most classification algorithms assume that a class can be represented by a single
distribution with one or several parameters. In our case (amplitude data), a class would
be represented by a Rayleigh-Nakagami distribution (see section 2.3) parametrized by
its mean reflectivity µ and its number of looks L. In this chapter, we will consider L to
be given by the acquisition process and constant through the image (which is typically
the case in synthesized but unprocessed data). On the other hand, µ depends on the
scattering properties of the class, and the assumption that it should be considered
constant through the image does not hold in the case of SWOT because of the antenna
pattern, the low SNR and local variations in water roughness.

Our goal is therefore to have a spatially varying parameter for each class at each
pixel of the image. This can be represented by as many images as the number of classes.
In the case of SWOT, we have two classes, and we will therefore have two images µ0

and µ1 taking into account these spatial variations instead of two scalars µ0 and µ1

in usual algorithms. While using these non-constant parameters is straightforward (we
just have to replace the constant value in the likelihoods by the indexed value of µ0 or
µ1), their estimation is not trivial and will be covered in section 4.4.

Results of the different proposed methods are shown and discussed in section 4.5.

4.2 Binary classification

In this section, we present existing methods that can be used for the classification of
SAR images. We will cover widely used methods from the literature, with the exception
of Markovian approaches which will be covered in section 4.3.
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(a) Likelihood distributions (b) Negative log-likelihood distributions

Figure 4.1 – Distribution of the likelihoods and the negative log-likelihoods for Rayleigh-
Nakagami distributed variables with L = 1 and µ0 = 10, µ1 = 20.

Maximum likelihood estimation In a Bayesian framework, the simplest solution
to find a binary map u indicating water from an observation v is to use the maximum
likelihood estimate, that is:

û = arg max
u

p(v|u) . (4.1)

This is equivalent to:
û = arg min

u
− log(p(v|u)) , (4.2)

which becomes, when considering the data separable:

û = arg min
u

∑
i

− log(p(vi|ui)) . (4.3)

In this case, we only need to define the negative log-likelihood. In section 2.3, we have
seen that in the case of amplitude images and assuming locally homogeneous radar
reflectivity, the data follows a Rayleigh-Nakagami distribution. Hence, we can easily
compute for each pixel − log(p(vi|0)) and − log(p(vi|1)) (for our specific case of binary
classification) and choose the solution giving the minimum value. As it can be seen in
Figure 4.1, this test results in a simple thresholding (where the threshold is set where
the two distributions are crossing). In this case, the threshold vth can be computed
(using the simplification of the likelihood introduced in section 2.3):

2L log(µ0) + L

(
vth
µ0

)2

= 2L log(µ1) + L

(
vth
µ1

)2

(4.4)

vth =

√√√√√2 log
(
µ0
µ1

)
1
µ21
− 1

µ20

(4.5)

We show a simple example using this method in Figure 4.2. We can see that this method
gives poor results in the case of amplitude SAR data. The strong fluctuations of speckle
for low L values prohibits the use of direct maximum likelihood estimations.
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(a) Input amplitude image (speckle-free) (b) Corresponding simulated SAR image (L =
1)

(c) Result using ML estimation

Figure 4.2 – Example on a simple simulated SAR image. The two classes are Rayleigh-
Nakagami distributed with parameters µ0 = 10 and µ1 = 20 and L = 1. Using the
maximum likelihood estimation gives a noisy result.
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MAP To cope with the fluctuations due to speckle, classification methods generally
use prior information on the distribution of the data. This information can either be
spatially independent (e.g. statistics on the distribution of the data), or take into
account the spatial distribution of the data. Integrating prior in the decision is well
expressed by the MAP formulation. Trying to find u using v can be expressed as trying
to find the model maximizing the posterior:

û = arg max
u

p(u|v) (4.6)

Using Bayes’ theorem, this gives:

û = arg max
u

p(v|u)p(u)

p(v)
(4.7)

= arg max
u

p(v|u)p(u) (4.8)

Where p(u) is a prior on the desired solution. This is known as the MAP estimation.
Note that when no a priori information is available, p(u) is a constant distribution and
Equation 4.8 is then equivalent to the MLE introduced in Equation 4.1. However, as the
MLE generally gives noisy results in the case of SAR images, it is generally interesting
to add a prior. Two mains types of priors can be used:

• spatial priors when information about the spatial distribution of the classes is
available. In this case, the most common method is to use MRF introduced in
section 3.2. This approach will be further described in section 4.3.

• statistical priors which will be covered in this paragraph: if we have some knowl-
edge on the prior probabilities of the classes, then the threshold can be improved.

We explain how statistical priors can be encoded in the MAP framework for the applica-
tion we are interested in in this chapter: water/land classification. It is estimated that
the continental water represents about 2.5% of the total continental surface of Earth.
Therefore, it can be interesting to use this statistic when detecting water. Assuming
the distribution of p(u) can be considered separable, this can be expressed at each pixel
as

p(ui = 0) = 0.975 (4.9)

p(ui = 1) = 0.025 . (4.10)

When taking the negative log likelihood of Equation 4.8 and assuming that the likelihood
distribution is separable we have:

û = arg min
u
−
∑
i

(log(p(vi|ui) + log(p(ui))) , (4.11)

which can be solved pixel by pixel by comparing the values of
− (log(p(vi|ui = 0) + log(p(ui = 0))) and − (log(p(vi|ui = 1) + log(p(ui = 1))). As for
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(a) p(v|u)p(u) (b) − log p(v|u)− log p(u)

Figure 4.3 – Distribution of the energies using the statistical priors of the water distri-
bution.

Figure 4.4 – Result on the dataset presented in Figure 4.2 for the statistical MAP
estimation.

the MLE seen in this section, this can be expressed as a simple threshold:

tstat =

√√√√√ log
(
µ20p(1)
µ21p(0)

)
1
µ21
− 1

µ20

, (4.12)

which can be interpreted as a shift compared to the distributions shown in Figure 4.2.
This is shown in Figure 4.3.

In practice, this means that we are less likely to wrongly classify a "land" pixel as
water, but it will be more likely to miss "water" pixels. Using the threshold presented
in Equation 4.12, result on the dataset presented in Figure 4.2 can be seen in Figure 4.4.
It shows that indeed the number of "land" pixels classified as "water" pixels are less
numerous, while the number of "water" pixels classified as "land" pixels has increased.
This minimizes the total error rate (as there is much more land than water), but it is
dangerous when water is the principal object of interest. In an extreme case, a classifier
which would label every pixel as land would obtain an overall error rate of only 2.5%.

We have seen that pixel-based classification, with or without the use of priors, can
not deal efficiently with the fluctuations of SAR images due to speckle. To this end it
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is necessary either to limit the effect of the speckle with a first step of denoising, or to
have priors on the spatial distribution of the classes. In the following paragraphs, we
present methods using a pre-processing step of denoising or segmentation.

Denoising as a first step As pixel-based classification can not efficiently deal with
the variations induced by speckle, a straightforward way to solve the problem is to apply
a method to reduce these variations as a pre-processing. Pixel-based classification can
then be applied. In (Liu and Jezek, 2004), a Lee filter (Lee, 1981) is first applied to
reduce the speckle followed by an anisotropic diffusion algorithm (Perona and Malik,
1990). The image is then thresholded assuming that the data follows a Gaussian distri-
bution. A similar method is used by (Cazals et al., 2016) which uses the Perona-Malik
filter of (Perona and Malik, 1990) followed by an hysteresis thresholding to detect flood-
ing on Sentinel-1A data. While the objective is not only to remove the effects of speckle,
(Cao et al., 2011) use a multi-scale approach to detect water in simulated SWOT images
with a technique similar to the one presented in chapter 5 for the detection of narrow
rivers in SWOT images. It is based on the assumption that any land water element can
be considered as thin at a sufficiently large scale. Note that state of the art denoising
methods for SAR images such as the one presented in (Deledalle et al., 2015) could
be used and provide the advantage, in addition to generally better speckle removal, to
preserve the statistics of the signal (as it will multilook the signal, the distribution will
only change on the number of looks L, see section 2.3). This property can be used for
the classification afterwards, which will be done in subsection 5.2.2.

Segmentation as a first step Another way to address the challenge of speckle for
pixel-based classification, is to perform a segmentation as a first step. In this case, the
critical step is generally the segmentation, as it should neither output regions containing
both classes, nor too over-segment. Once a good segmentation has been found (that
is, sufficiently large regions containing only one class so that statistics can be reliably
estimated) the actual classification can be made based on these statistics. In a first
approach, this problem can be solved using edge detection. Generally, edge detection
algorithms are based on the gradients of the images, but the multiplicative nature
of the speckle present in SAR images prevents from having good performances using
differences. (Touzi et al., 1988) and (Fjørtoft et al., 1998) tackle this problem by using
a ratio operator which is adapted to the presence of speckle. When using this kind of
method, it is required to apply a method extracting closed and skeleton edges, defining
a segmentation, for instance using the watershed algorithm.

In (Silveira and others, 2009) the classical formulation of (Chan and Vese, 2001)
is adapted to SAR images for water segmentation using log-normal distributions to
model the statistics. Chan-Vese method belongs to a family of methods called "active
contour", where the goal is to modify the shape of the segmentation based on an energy
taking into account its quality (based on the statistics of the images computed region-
wise or along the boundaries) and its fidelity to a prior model on its shape. In the case
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of (Chan and Vese, 2001), its formulation is a sum of terms enforcing three properties:

• the length of the curve is penalized (to enforce regularity);

• the area inside the curve is controlled to obtain a desired size;

• the radiometry inside and outside the curve should be separated to two constant
values (which are found during the optimization process).

It is based on a level set formulation. In the case of SAR images, this is not adapted
as it assumes a Gaussian distribution of the noise. Level set models adapted to SAR
images have been presented in (Ben Ayed et al., 2005) in the case of intensity images,
or in (Ben Ayed et al., 2006) for polarimetric SAR images. An attempt to use the
formulation of (Ben Ayed et al., 2005) for water/land classification has been made in
(Silveira and others, 2009) without success as the assumption that both classes are
homogeneous in intensity does not hold. This is indeed a problem that we encounter in
the case of SWOT images, and which is tackled in this chapter.

Another family of active contour models, snake-based methods, explicitly define the
limits of the regions by a set of points which are moved to fit a model. They have also
been applied to SAR in (Chesnaud et al., 1999). In this approach, the authors consider
the statistics of the region delimited by the curves instead of those of the curve itself.
The motivation behind this is that when using SAR images, boundaries are not well
defined. Once again, this kind of approach is not well suited when each region can not
be considered homogeneous. To this effect, (Jung et al., 2012) proposed to use non-local
information for the computation of the statistics of the region (pixels are not compared
to their spatial neighbors, but to pixels that have similar neighbors, while still inside
the same region). This idea is extended to SAR data by (Xia et al., 2016) using the
adapted similarity measures along with a multi-scale processing.

Other segmentation techniques applied to SAR are based on the minimum descrip-
tion length (MDL) introduced in the field of information theory by (Rissanen, 1978).
The goal of this technique is to find a representation of the data which is well fitted
while having a low complexity (i.e. few parameters). In term of image segmentation,
this translates to finding a good segmentation and a good statistical description of
the radiometry of each region. In (Galland et al., 2003), this idea is applied to SAR
data and it introduces the concept of the active grid, i.e. a set of nodes which can be
joint by a segment to delimit the regions. It starts with a regular grid, and applies
iteratively three operations: a merge (adjacent sets of nodes can be merged), a move
(to move some nodes in the grid) and a remove (to remove unnecessary nodes for the
representation).

Such methods could be useful for binary classification. However, we have seen that in
the case of SWOT, the data have variations in the range resolution (making geometrical
description of the result harder to use in practice) and both global (from the antenna
pattern) and local (from the variations in the surface roughness) radiometry variations.
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In the following, we present methods based on the MRF formulation to tackle these
problems.

4.3 Markovian approaches

In section 3.2 we have seen that in order to define a random field, one has to define the
clique potentials. Then the solution will be given by:

u
∧

= arg min
u

E(u)

= − log p(v|u)− log p(u) , (4.13)

with the data term − log p(v|u) depending on the acquisition of the data and the prior
− log p(u) depending on the task.

A suitable and widely-used prior for binary classification is the Ising model that will
penalize neighbor pixels belonging to different classes:

ψ(x, y) =

0 if x = y or,

1 if x 6= y .
(4.14)

This prior will, independently of the data term, favor spatially homogeneous outputs.
In the case of water bodies, this is particularly adapted to lakes. In the following, we
will therefore use:

− log p(u) = β
∑
i∼j

ψ(ui, uj) + k , (4.15)

where β is a positive weight to give more or less importance to the prior and k is a
constant.

The data fidelity term (− log p(v|u)) describes how well the data v is explained by
the model u. In the case of amplitude images, we have seen in chapter 2 that the data
follows a Rayleigh-Nakagami distribution. Making the assumption that the distribution
can be considered separable and that the parameter µ is spatially varying (denoted by
µui,i for class ui at pixel i), it gives:

− log p(v|u) = −
∑
i

log

 2

Γ(L)

√
L

µui,i

(√
Lvi
µui,i

)2L−1

e
−
(√

Lvi
µui,i

)2
 , (4.16)

with L the number of looks. As we want to allow for non constant class parameters,
the parameters µ0 and µ1 are images (which appear indexed in Equation 4.16). As for
each pixel we will optimize on ui, Equation 4.16 can be simplified by removing class
independent terms (see section 2.3):

− log p(v|u) =
∑
i

(
2L log(µui,i) + L

(
vi
µui,i

)2
)

(4.17)
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?

Figure 4.5 – We want to classify the pixel in the center to either class "red" of parameter
µr or "white" of parameter µw. Given the configuration where the pixel to be classified
is surrounded by "red" class, the regularization would favor labeling it as "red". We
propose a method that answers the following question: for a given amplitude, what is
the value of β from which the prior term will be higher than the data-term ?

While the number of looks L is usually a known image parameter, the distribution
parameters µui (in our case ui can either be 0 or 1, so we have two parameters) depend
both on the acquisition parameters (mainly the wavelength and incidence angle) and
the surface to be imaged (its roughness and topography). Their computation will be
covered in section 4.4.

The energy defined in Equation 4.13 can then be minimized using the binary
graphcut method of (Greig and others, 1989) presented in subsection 3.2.2.

Setting of β In this framework, the β parameter balances the data term and the
prior. It can not be set fully automatically as it depends on the application and desired
result. While it can be set by an exhaustive search (trying many values for β, computing
the results with respect to a ground truth and selecting the best value, provided that
such a ground truth is available on a representative test area), it can also be set using
the qualitative boxes method described by (Azencott, 1992); in the configuration shown
in Figure 4.5, we can compute the local energy for both classes (which differs by the
class parameter used and the term 4β):

? 2L log(µw) + L

(
v

µw

)2

+ 4β (4.18)

? 2L log(µr) + L

(
v

µr

)2

. (4.19)

Setting Equation 4.18 equal to Equation 4.19 gives:

β =
L

2
log

(
µw
µr

)
+
Lv2

4

(
1

µ2w
− 1

µ2r

)
. (4.20)

Once µr and µw have been computed, we can obtain a curve such as the one shown in
Figure 4.6, allowing for a simpler way to set β. In order to use this curve to set β, it
should be read as follow: on the considered configuration of Figure 4.5 (where the most
likely class should be red), what is the minimum value of the amplitude of the pixel
that should be classified as white? Setting v to this value in Equation 4.20 gives the β
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Figure 4.6 – Tipping point using µr = 5 and µw = 10, L = 4 and the configuration
presented in Figure 4.5. For a given amplitude value, the assigned class will be "red" if
β is higher than the curve, or "white" otherwise.

that should be used.
Summary: Markov Random Fields for water/land classification

While this is not a new method, MRF is a simple model that enforces spatial reg-
ularity in the classification. Using an Ising prior allows for a spatial regularization
to limit the effect of the speckle.
A regularization parameter is needed to balance the data term and the prior.
We presented a method to easily set this parameter.

The pseudo-code of this method is presented in algorithm 3.

Algorithm 3: MRF for water/land classification
Data: Observed image v
Result: Model u
Set class parameters µ0, µ1 /* Either known a priori or computed from a

first unsupervised classification (e.g. K-Means) */

β = choose_from_qualitative_boxes(µ0, µ1, vref );
/* Optimization, see subsection 3.2.2 */

graph = construct(v, µ0, µ1, β) /* Using method from (Greig and others,

1989) */

gc = graphcut(graph);

∀i, ui =

0 if gc(i) ∈ source

1 otherwise.
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Figure 4.7 – Average parameter evolution in the swath. The green curve shows the
parameters for land class, blue for water and red show the MLE when assuming constant
water parameter. The water curve reflects the antenna pattern. The land profile is
flatter, as land is dominated by thermal noise.

4.4 Estimation and spatial regularization of class parame-
ters

In this section, we propose to adapt the algorithm of section 4.2 to the particular prop-
erties of SWOT images. We have seen in section 2.4 that the antenna pattern of SWOT
amplitude images cannot be properly corrected. Also, because of the wind-related wa-
ter roughness variations and land topological ones, there may be strong variations in
the backscattered signal for both classes. These differences make popular classifica-
tion algorithms presented in section 4.1 not suited to SWOT amplitude images. To
demonstrate this, we show in Figure 4.8 a result obtained using classical MRF with the
exact optimization method presented in subsection 3.2.2 proposed by (Greig and others,
1989). This result can be easily explained, even when only considering the variations
introduced by the antenna pattern. We show in Figure 4.7 the parameters for both land
and water classes when computed at each column of the image (range direction), and
the MLE for the water parameter if we consider a single parameter. It can be easily seen
that a scalar parameter (red curve) does not well represent the class at the beginning
and end or at the middle of the swath.

In this section, we will use the framework provided by MRF as defined in section 3.2
and adapt this classical algorithms to the case of non-constant classes parameters.

Our goal is to estimate parameters images µ0 and µ1 so we can use them in a MRF
framework as seen in section 4.3. Parameter estimation can be done either once, prior
to the classification, or come in an iterative process, such as proposed in (Fjørtoft et
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(a) Input amplitude simulated image of the
Camargue area

(b) Result using a scalar parameter for land
and water

Legend: True positive True negative False positive False negative

Figure 4.8 – Extract of a result using MRF with constant parameters on a simulated
SWOT image. Note that we have more false negative at the beginning of the swath
than on the middle
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Parameter images:

Classification Parameters
estimation

Updated parameter images:Observed image   

Classification        

Figure 4.9 – Iterative parameters estimation: from a first estimation of the parameters, a
classification is computed and used to reestimate a new set of parameters. This process
is then iterated.

al., 2003). In this case, a first estimation {µ0
0,µ1

0} is made. This estimation is then
used by the MRF to obtain a classification u0, which is then used to estimate a new
set of parameters {µ0

1,µ1
1}. This process is repeated, with a refined set of parameters

and classification at each iteration. The general process is sketched in Figure 4.9. In
the following, we will present 4 methods for the estimation of the parameters, ordered
by complexity:

1. Constant parameters, with no re-estimation;

2. Non-constant parameters with no re-estimation;

3. Region-based parameters estimation;

4. Dense estimation.

While the first and second ones only use information known a priori, the two other
methods use the iterative process pictured in Figure 4.9.

4.4.1 Constant parameters

A simple method is to consider that both classes have the same physical properties
everywhere in the image and to estimate the two parameters using the MLE (which
corresponds to an averaging in intensity) based on a first classification or a prior mask
u0:

∀j , µ0,j =

√√√√√
∑
i

(1− u0i )v2i∑
i

(1− u0i )
∀j , µ1,j =

√√√√√
∑
i
u0i v

2
i∑

i
u0i

. (4.21)

Another method is to use a simple model for the expected physical properties of the
water and land areas, and use them to obtain the values of µ0 and µ1.
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We will see in the results presented in section 4.5 that in the case of SWOT, using this
simple method for the parameters definition gives poor results. Therefore, estimating
the parameters tailored to the observed data is the main problem we seek to solve in
this chapter.

4.4.2 Non-constant parameters with no re-estimation

In section 2.4, we saw that:

• Water and land’s σ0 do not behave the same way with respect to the incidence
angle;

• We have a low SNR (especially for the land class). This means that land signal
is dominated by thermal noise which is not affected by the antenna pattern.

Considering these two reasons, the antenna pattern of the system cannot be corrected
as it is usually done in SAR systems. This is one of the two sources of variations in
the backscattering properties across the image that we presented in the introduction of
section 4.4. While local variations depends on the imaged scene, variations due to the
antenna pattern ("global variations") are always present in the system.

Obtaining the antenna pattern is a widely studied problem in SAR as it is often
necessary to correct the effect of the antenna before exploiting the images. For instance,
in (Bachmann and others, 2010), a model for the antenna of TerraSAR-X is proposed.
An other method, used in the case of ENVISAT, is to use observations of homogeneously
distributed targets to obtain a precise model of the antenna pattern after the launch of
the satellite. In the case of SWOT, the antenna pattern will be very precisely known.

In addition to the effects of the antenna pattern, the backscattered signal for land
areas highly depends on the topography (see section 2.4). For instance, it can result in
layover with a strong signal. This can be predicted from the DEM when it is available.
In this section we present two different simple methods for the definition of the class
parameters.

Estimation from the Xfactor As seen in section 2.4, the Xfactor is a by-product
of the acquisitions that links the received signal to the σ0 of both classes. We recall
Equation 2.14 (in dB):

Preceived = Psignal + Pnoise (4.22)

= Xfactor× σ0 + Pnoise . (4.23)

Considering that we also know (from the calibration phase) the mean noise level and
the typical σ0 for both classes, we can obtain the class parameters. While the Xfactor
would normally provide good classes parameters, it can be inaccurate in many ways:

• We make hypotheses about the expected σ0 of water and land. However, natural
variations (e.g. wind speed and topography) can result in variations of the σ0.
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• The Xfactor is computed based on a reference DEM which is not perfect.

For these reasons, it is sometimes better to discard the Xfactor for the parameter esti-
mation, and use the following method.

Estimation based on a first classification In this paragraph, we propose to es-
timate the parameter images based on the observed images and a first classification.
This first classification can either be obtained using the constant MRF as defined in
section 4.3 (using the constant parameter estimation presented in subsection 4.4.1; or
the Xfactor presented in the previous paragraph) or be a prior mask (either from a
priori data, or from a previous pass over the same site).

A straightforward way to obtain it is to use an averaging window; we use a window
with the same height as the image, and a width of few columns (depending on the
distribution of both classes). For the image of Figure 4.10, we have chosen a width of
30 pixels. Sliding this window in the range direction gives a curve for each class, such
as the ones presented in Figure 4.7. This method assumes that the variations in the
class parameters only come from the antenna pattern, which is not true (as explained in
the introduction of section 4.4). Even in the case of perfectly constant class parameters
beside the effect of the antenna pattern, we can expect to have variations when only a
limited number of samples of a class are present in a window.

To limit the effect of varying parameters and estimation errors, we fit a second
order polynomial using the least-square method to the parameter curve. The resulting
second order polynomials are noted p0 and p1 in the following. Note that when a
more accurate antenna pattern model is available, it can also be expressed as a 1D sig-
nal, and used in the same way in the following. The process is illustrated in Figure 4.10.

Using the 1D signal representing the antenna pattern (estimated or known a priori),
obtaining the parameters images is straightforward; the 1D signal is repeated along the
azimuth direction in order to obtain a 2D signal:

∀(i, j) ∈ [1, NAzimuth]× [1, NRange] µ
0
x,(i,j) = px,j , (4.24)

where NAzimuth is the number of pixels in the azimuth direction and NRange is the
number of pixels in the range direction and x can either be 0 (land class) or 1 (water).

Comparison of the two methods These two methods only take into account prior
information and can be easily compared. Such a comparison is shown in Figure 4.11
using the ground truth mask for the window averaging method, and the theoretical
values for the σ0 of land and water. Based on the image size (≈ 3500×3500 data pixels),
the estimation is made on a window of size 21× 3500, making the MLE accurate. We
can see that we have a small bias (that comes from inaccurate values for σ0). However,
we can see that the shapes of the curves are mostly the same.
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Figure 4.10 – To compute the antenna pattern, a sliding averaging window (in red on
the amplitude image) is applied. The resulting curves are then fit to a second order
polynomial. See www.sylvainlobry.com/phd for the animated image.

Summary: Non-constant parameters estimation from antenna pattern

We present two simple methods to estimate spatially variable class parameters.
In the first method, we use the theoretical antenna pattern and a DEM. The
second method only uses a reference mask to compute variable parameters in the
range direction. The pseudo-code for this algorithm is given in algorithm 4.
We will see in section 4.5 that while these methods do not give very good results,
they provide a good initialization for the after-mentioned methods.

www.sylvainlobry.com/phd
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Figure 4.11 – Comparison of the two methods for the estimation of the parameters
based on prior information averaged (window width = 21) on the range direction.

Algorithm 4: MRF for water/land classification with antenna pattern
Data: Observed image v
Result: Model u, antenna pattern A
µ0,µ1 = compute_parameters_from_antenna_pattern(A);
β = choose_from_qualitative_boxes(µ0,µ1, vref );
/* Optimization, see subsection 3.2.2 */

graph = construct(v,µ0,µ1, β) /* Using method from (Greig and others,

1989) */

gc = graphcut(graph);

∀i, ui =

0 if gc(i) ∈ source

1 otherwise.
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4.4.3 Region-based parameters estimation

While the method presented in subsection 4.4.2 can use non-uniform parameters, it is
only able to take into account systematic variations coming from the antenna pattern.
In this section, we describe an iterative method based on a quadtree partitioning of the
image to estimate parameters that can capture local variations. Our goal is to obtain a
partition P = {r1, . . . , rn} where the parameters can be considered constant within each
region ri. Hence, the class parameters can be estimated in each region independently.
To obtain a satisfying non-uniform estimation of the parameters, the partition should
fulfill two requirements:

• R1: each region of the partition should be large enough and contain enough
samples of each class so the MLE can be applied reliably.

• R2: each region of the partition should be small enough so we can capture local
variations.

Partitioning process The partitioning process is made using a quadtree approach
(Samet, 1984). Quadtrees have been extensively used in image processing; application
includes image coding (e.g. (Sullivan and Baker, 1994)) and image segmentation (e.g.
(Bouman et al., 1994)). In our approach, the partition is updated at the "parameter
estimation box" in the general process presented in Figure 4.9. The partitioning is made
as follow:

1. We start with a partition in one region (P = {r0}) and a first classification u0.
Note that in this case, R2 is not fulfilled as r0 can not be considered small.
Parameter images µ0 and µ1 are either computed by the MLE on the entire
image (using u0) and are then constant, or computed from the antenna pattern
(see subsection 4.4.2).

2. For each region of the partition, we seek a new partition:

(a) First, the region is divided into 4 regions of equal size.

(b) If one of the newly-created regions break R1 (verified with the current clas-
sification), the proposed partitioning is canceled, and a new partition in 2
regions (with a vertical cut) is tried.

(c) If this partition breaks R1, we cancel the proposed partitioning and we try
a partition with only an horizontal cut.

(d) If this also breaks R1, the proposed partitioning is canceled and the region
is left unchanged.

3. Parameters are computed using the MLE region-wise to obtain the new parameter
images µ0

n and µ1
n.

4. We perform the regularization described in the next paragraph on µ0
n and µ1

n.
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5. A new classification un is obtained using µ0
n and µ1

n with the method described
in section 4.3.

6. We repeat the process from step 2 until no region can be partitioned.

The partitioning process for each region (item 2.) is illustrated in a simple case in
Figure 4.12

(a) Region to be
partitioned

(classification is red
against white).

(b) Division in 4 parts:
not possible,

right-side region only
contains one class,

breaking R1.

(c) Vertical cut: not
possible, right region
only contains one class,

breaking R1.

(d) Horizontal cut:
possible, both regions
contain both classes.

Figure 4.12 – Partitionning process for a given region. At first a division in 4
regions is attempted. If it is not possible, a division in 2 regions is attempted.

In practice, the partitioning process can only break R1 (as it is trying to create
smaller region). Therefore, we only need to check for R1 during the process. R2 is then
fulfilled as well as possible when we break R1.

Post-estimation regularization The objective sought in R1 is that we have enough
points to reliably use the MLE for both classes. Using the current classification ui we
check at each step i that we have enough representatives of each class in each region to be
created. The problem with this method is that we do not know the exact classification,
and ui may contain wrong information (this is especially true during the first steps). In
this case, we may create regions where only one class is actually present. When we try
to do binary classification on images containing only one class, we have a degenerate
case which can lead to a wrong estimation of the parameters. An illustration of this
phenomenon on a simple example is presented in Figure 4.13.
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(a) Input image to be
classified, white parameter is

10, red is 20.
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(b) First classification.
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(c) Second classification.
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(d) Third classification

12 5 4

4 10 16

13 11 10
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(e) Fourth classification.
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4.7 11.8

(f) Fifth classification.

Figure 4.13 – Simple example; we want to classify the input image (let’s assume
Gaussian noise, for this illustration only). This image should be clearly classified as

white. However, we can note that due to the iterative estimation of parameters, it ends
up classified as mostly red, with a red parameter close to the initial white parameter.

To cope with this behavior, we propose to add a global regularization step. While
water reflectivity can have local variations that are not known a priori, global variations
due to the antenna pattern are generally known. For the land class, we can also expect
variations from the land topography, that can be computed from a DEM when it is
available. After each iteration of the parameters estimation, we check that the estimated
parameters are not too far from their theoretical value according to the Xfactor ("too
far" being controlled by an additional parameter βreg). Recall that the theoretical values
come from the prior information contained in the first parameter images µ0 and µ1.
When an estimated parameter is too far from its theoretical value, it is assumed to be
diverging. In this case, it is set to the theoretical value prior to the re-estimation of the
parameter:

∀i µnx,i =

µnx,i if |µnx,i − µ0x,i| < βreg ,

µ0x,i otherwise.
(4.25)
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In practice, this prevents from diverging points, as it is shown in section 4.5.

Summary: Region-based estimation of the class parameters

In the proposed method, classification and partitioning of the image are alter-
natively performed. Classes parameters are estimated region-wise, allowing for
variations. An additional step of regularization is performed after each estimation
to avoid degenerate cases. In this method, we have three parameters:

• The minimum size of a region.

• The minimum proportion of each class in a region.

• The maximal difference between the theoretical value (given by the antenna
pattern) and the estimated value.

The pseudo-code for this algorithm is given in algorithm 5.

Algorithm 5: Water/land classification and quadtree parameter estimation
Data: Observed image v, min_size_region, min_portion_of_each_class, βreg

Result: Model u, antenna pattern A
µ0

0,µ1
0 = compute_parameters_from_antenna_pattern(A);

β = choose_from_qualitative_boxes(µ0,µ1, vref );
graph = construct(v,µ0,µ1, β) /* Using method from (Greig and others,

1989) */

gc = graphcut(graph);

∀i, u0i =

0 if gc(i) ∈ source

1 otherwise.
;

P0 = init_partition();
while R1 do

/* Parameter estimation */

Pn = partition(Pn−1);
µ0

n,µ1
n = compute_parameters_from_(Pn, un−1, v);

µ0
n,µ1

n = post_estimate_regul(µ0
n,µ1

n, βreg)/* See Equation 4.25 */

/* Optimization, see subsection 3.2.2 */

graph = construct(v,µ0
n,µ1

n, β) /* Using method from (Greig and

others, 1989) */

gc = graphcut(graph);

∀i, uni =

0 if gc(i) ∈ source

1 otherwise.
;
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4.4.4 MRF estimation of the parameter images

While the region-based parameter estimation allows for some variations in the parame-
ters, we have seen that the two requirements on the partition are contradictory; the first
one requires large regions so the MLE can be used efficiently, the second one requires
small regions so that we can have local variations. In practice, this prevents the model
from capturing variations at small scales. It also tends to create sharp transitions rather
than gradual evolution in the parameters

To cope with this problem, we propose a model that is still based on the general
process presented in Figure 4.9 with the difference that the parameters images
(µ0,µ1) are now allowed to take different values at each pixel (i.e. no curve-based
or region-based constraint). To obtain such parameters images, we are going to stay
in the MRF framework; in addition to the classification step of Figure 4.9 being a
MRF, we will also use such a model for the estimation part defining one MRF for each
parameter map µ0 and µ1.

We have seen in chapter 2 that speckle in amplitude SAR images can be described
by a multiplicative model on the square root of the reflectivity µ:

vi = µi × ξi . (4.26)

To obtain an energy function easier to optimize, we consider the logarithm of the images.
When considering the logarithm of the image, the image is corrupted by an additive
term ξ̃i. This term can be considered in a first approximation to be Gaussian distributed
(see chapter 2):

ṽi = µ̃i + ξ̃i ≈ µ̃i + ηi , (4.27)

where x̃ = log x and ηi is Gaussian distributed.
In the following, we define two MRF; one for each µ̃x, x ∈ {0, 1}. We can estimate

µ̃x in a Bayesian framework, based on the knowledge of ṽ and u (dropping the constant
values and assuming that p(µ̃x|u) = p(µ̃x)):

− log(p(µ̃x|ṽ,u) = − log(p(ṽ|µ̃x,u))− log(p(µ̃x)) (4.28)

In the MRF of µ̃x, we want to define the data-term such that it takes into account the
observation at pixels i where the current classification is uni = x. As we assumed the
noise is Gaussian distributed, the data term is simply an L2 distance between the model
and the observation. In the cases where uni 6= x, the data-term is set to a constant value
(0 in our case):

− log(p(ṽ|µ̃x, u)) =
∑
i

(ṽi − µ̃x,i)2 if uni = x ,

0 otherwise .
(4.29)

=
∑
i

δ̄(uni = x)(ṽi − µ̃x,i)2 , (4.30)
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with:

δ̄(x) =

1 if x is true,

0 otherwise.
(4.31)

The regularization term enforces spatial regularization. As more systematic varia-
tions in the range direction are expected (because of the antenna pattern), the spatial
regularization is expressed as the sum of two terms: one for the range direction, the
other for the azimuth. For the same reasons as in subsection 4.4.3, we also add a reg-
ularization term taking into account the theoretical value from the Xfactor and the σ0
hypotheses. It yields the following formula for x ∈ {0, 1}:

−log(p(µ̃x)) = βaz
∑
i∼azj

(µ̃x,i−µ̃x,j)2+βrg
∑
i∼rgj

(µ̃x,i−µ̃x,j)2+βth
∑
i

(µ̃x,i−µ̃0x,i)2 . (4.32)

Another option is to take into account the expected variations coming from the
Xfactor directly in the first two terms:

− log(p(µ̃x)) = βaz
∑
i∼azj

(µ̃x,i − µ̃x,j −∆(i, j))2 + βrg
∑
i∼rgj

(µ̃x,i − µ̃x,j −∆(i, j))2 , (4.33)

where ∆(i, j) = µ̃0x,i − µ̃0x,j . Note that in the case of − log(p(µ̃1)), we do not have
variations in the azimuth direction (i.e. ∀i∼azj ,∆(i, j) = 0). While Equation 4.33
remove βth making it easier to set, Equation 4.32 allows for a finer tuning, expressing
how confident one is in the prior.

In the following, we will use Equation 4.33, giving the following two MRF:

µ0
n+1 = arg min

µ
E0(µ)

= arg min
µ

∑
i

(1− uni )(ṽi − µ̃i)2 + βaz
∑
i∼azj

(µ̃i − µ̃j)2

+ βrg
∑
i∼rgj

(µ̃i − µ̃j)2 + βth
∑
i

(µ̃i − µ̃00,i)2 (4.34)

µ1
n+1 = arg min

µ
E1(µ)

= arg min
µ

∑
i

uni (ṽi − µ̃i)2 + βaz
∑
i∼azj

(µ̃i − µ̃j)2

+ βrg
∑
i∼rgj

(µ̃i − µ̃j)2 + βth
∑
i

(µ̃i − µ̃01,i)2 (4.35)

As E0 and E1 are continuous and quadratic problems, they can be optimized using the
conjugate gradient method.
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Summary: Markovian estimation of the parameter images

In this method, parameter images are estimated using a markovian framework to
regularize the parameters. The regularization is both spatial and based on the
initial parameters to prevent over-fitting. This method uses three parameters:

• two weights for the spatial regularization in both directions;

• a weight for the regularization considering prior information such as the
Xfactor.

The pseudo-code of this algorithm is given in algorithm 6.

Algorithm 6: Water/land classification and MRF parameters estimation
Data: Observed image v, βaz, βrg, βth

Result: Model u, antenna pattern A
µ0

0,µ1
0 = compute_parameters_from_Xfactor(A);

β = choose_from_qualitative_boxes(µ0,µ1, vref );
graph = construct(v,µ0,µ1, β) /* Using method from (Greig and others,

1989) */

gc = graphcut(graph);

∀i, u0i =

0 if gc(i) ∈ source

1 otherwise.
;

while µn 6= µn−1 do
/* Parameter estimation */

µ0
n = compute_parameters(v,un−1, βaz, βrg, βth);

µ1
n = compute_parameters(v,un−1, βaz, βrg, βth);

/* Optimization, see subsection 3.2.2 */

graph = construct(v,µ0
n,µ1

n, β) /* Using method from (Greig and

others, 1989) */

gc = graphcut(graph);

∀i, uni =

0 if gc(i) ∈ source

1 otherwise.
;
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4.5 Results

In this section we present the results obtained using the following methods (presented
in this chapter):

• the pixel-based MLE and MAP classification algorithms as well as the MRF clas-
sifier with:

– constant parameters;

– parameters accounting for the antenna pattern;

– parameters based on the Xfactor;

• the region-based MRF;

• and the MRF classification with the Markovian parameters estimation.

The results are presented on four images:

• an extract of a simulated SWOT image (using JPL’s HR science simulator of
the Garonne river (in France);

• an extract of a simulated SWOT image (using JPL’s HR science simulator of
the Po river (in Italy);

• a simulated SWOT image (using CNES HR simulator) of the Camargue area (in
France);

• and a real image of the Kaw area (in France) acquired by Office National d’Études
et de Recherches Aérospatiales (ONERA) SETHI, a P-band airborne sensor, dur-
ing the TropiSAR campaign .

Data: The main characteristics of the data are presented in Table 4.1 and the images
are shown in Figure 4.14. We only use extracts of the Garonne and Po images as the
JPL simulator outputs "no data" pixels (generally when the input DEM tile is smaller
than the swath). These pixels can be difficult to handle in the graphcut optimization of
the MRF and in the markovian estimation of the parameters. While we have developed
(and implemented in the CNES processing chain) methods to take them into account,
their presence can slightly decrease the performances of the markovian estimation of the
parameters. Furthermore, "no data" pixels will be very limited in real SWOT images.
Therefore, we extracted portions of the images without such pixels.

The data acquired by SETHI has two advantages for the evaluation of the methods:

1. the antenna pattern is not corrected. Therefore, it shows similar behavior to what
is expected in SWOT data;

2. it allows us to evaluate our models on real data, in addition to simulations.
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Garonne Po
Origin JPL SWOT simulator
Band Ka (35.75GHz)

Incidence angle 0.6 - 3.9◦

Resolution (azimuth × range) 70m-10m × 5m
Size (azimuth × range) 2915 × 1530 1517 × 3108

Ground truth from simulator from simulator
(with manual corrections)

Mixed pixels Land Land

Camargue Kaw
Origin CNES SWOT simulator ONERA SETHI
Band Ka (35.75GHz) P (0.44GHz)

Incidence angle 0.6 - 3.9◦ 24 - 62◦

Resolution (azimuth × range) 70m-10m × 5m 1.5m × 1.2m
Size (azimuth × range) 2979 × 1839 5788 × 4000

Ground truth from simulator manual
Mixed pixels Water N/A

Table 4.1 – Characteristics of the data used for the evaluation of the methods

Note that in the case of SETHI, water is dark and land is brighter (which is the
opposite of SWOT). This is not a problem for the proposed methods.

In the SWOT simulators (both for JPL and CNES), there is the option to add local
variations in σ0 (see Equation 2.14) . Over land, there will also be variations due to
the topography. As we can see in Figure 4.14, these local variations are not present in
a same way in all images. In the Garonne image, there are almost no variations except
in the right part of the image. On the opposite, in the Po image, there are cases of
"dark water": when there is little or no wind on the surface (i.e. it is smooth), it acts
as a mirror and no signal is backscattered towards the radar. In the Camargue image,
some areas are a bit darker but there is no completely dark water. Also note that the
water/land contrast is higher in the Garonne and Po images than in the Camargue
image.

Methods: For the methods not iteratively estimating parameters (i.e. MLE, MAP
with statistical distribution of the data and MRF), we use three set of parameters:

• constant parameters: to compare with the usual approach of binary classification
(i.e. constant classes parameters), we compute a single parameter as the mean of
the Xfactor parameter image.

• parameters accounting for the antenna pattern: to have a more realistic case,
we fitted a second-order polynomial on the ideal parameters images in the range
direction. It is the same principle as shown in Figure 4.10, but we directly use
the parameters from the Xfactor instead of a first classification.
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(a) Garonne (b) Po (range direction on the vertical axis)

(c) Camargue (d) Kaw

Figure 4.14 – Data used for the evaluation of the water/land classification methods
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• parameters based on the Xfactor (see Equation 2.14): this represents an ideal sce-
nario. Indeed, the Xfactor is computed from the DEM, which will not be perfectly
accurate for real images. Furthermore, the computation of the parameters from
the Xfactor requires knowledge of the σ0 of water and land. While measurements
have been performed and the system will be calibrated (see section 2.4), there will
be spatio-temporal variations in σ0.

We tested the classification methods jointly estimating the parameters (either region-
based or using a Markovian model) using these three initializations. We discuss the
influence of the initialization in subsection 4.5.4.

Metrics: In the following, we compute the performances using widely-used metrics:
the True Positive Rate (TPR), the False Positive Rate (FPR), the Error Rate (ER) and
the Matthews Correlation Coefficient (MCC). They all can be expressed from:

• the number of water pixels correctly classified (TP);

• the number of land pixels correctly classified (TN);

• the number of water pixels wrongly classified (FN);

• and the number of land pixels wrongly classified (FP).

Then, the metrics are defined as follow:

TPR =
TP

TP + FN
, (4.36)

FPR =
FP

FP + TN
, (4.37)

ER =
FP + FN

TP + FN
, (4.38)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4.39)

While the TPR and FPR are widely used measures, ER and the MCC is interesting
for us as they are well adapted to problems where the number of elements belonging
to one class is much larger than the number of elements belonging to the other class.
They both give a single score which is useful for the comparison of the methods.

In the case of the ER, a good classification has a score close to 0, while the MCC is
a number between -1 and 1, where 0 is equivalent to a random classification and 1 is a
perfect classification.

4.5.1 Results on Garonne

We show the numerical results for the Garonne image in Table 4.2. The best classifi-
cation, according to both ER and MCC is the one obtained using the MAP with the
statistical prior and the parameters from the Xfactor, which is unexpected. Indeed, it
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Method Estimation TPR FPR Error Rate MCC(water detection)

MLE
Constant 95.87% 3.80% 418.79% 0.4153
Polynomial 95.81% 3.91% 430.00% 0.4104
Xfactor 95.77% 4.61% 506.42% 0.3816

MAP
Constant 90.27% 0.12% 22.32% 0.8890
Polynomial 90.23% 0.11% 22.26% 0.8893
Xfactor 90.15% 0.11% 22.13% 0.8897

MRF
Constant 97.08% 0.23% 28.93% 0.8738
Polynomial 97.02% 0.24% 28.73% 0.8744
Xfactor 96.98% 0.23% 28.24% 0.8761

MRF (Region-based)
Constant 94.72% 0.18% 24.8% 0.8851
Polynomial 94.66% 0.18% 24.86% 0.8848
Xfactor 94.66% 0.18% 24.85% 0.8848

MRF (Markovian)
Constant 97.09% 0.24% 28.94% 0.8738
Polynomial 97.04% 0.24% 28.73% 0.8744
Xfactor 97.00% 0.23% 28.25% 0.8760

Table 4.2 – Performance metrics for the Garonne image

does not use the spatial information. It is interesting to note that for this data, MAP
has the smallest TPR (but also the smallest FPR). We show in Figure 4.15 the results
obtained by the MAP with parameters estimated from the Xfactor and the method
giving the highest TPR. From these results, we can note two things:

• This is a simple case: we can see on the amplitude image that the water/land
contrast is very high so spatial regularization to limit the effects of speckle is not
crucial. This explains why all the proposed methods (except for the MLE) obtain
equivalent classification results.

• The false positives are only located at the edges of the river. This comes from the
fact that mixed pixels here are labeled as land in the ground truth (see Table 4.1).
It explains why methods having the highest TPR also have a higher FPR.

Therefore, we can deduce that in favorable cases such as this one, all the presented
methods (except for the MLE) are equivalent.

4.5.2 Results on Po

The Po dataset also presents a high water/land contrast, but with simulates variations
in wind speed over the water surfaces, yielding in variations in backscattering, including
regions with so-called dark water (i.e. weak or no signal). The results for this image
are presented in Table 4.3. It is interesting to note that the MRF with the region-based
estimation of the parameters obtain the same results with the different initializations
of the parameters maps. We can see that, as expected, the lowest FPR is obtained
by MAP with parameters estimated from the Xfactor and the correct (as used in the
simulation) hypotheses on the values of the σ0 of land and water. Also, the highest
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(a) Input amplitude image (b) MAP with Xfactor pa-
rameters

(c) MRF with Markovian pa-
rameters estimation

Legend: True positive True negative False positive False negative

Figure 4.15 – Results on the Garonne image

TPR is obtained by the MRF with Markovian parameters estimation. This method
also gets the highest MCC. We show the visual results of these methods in Figure 4.16.
When there is "dark water", it is not taken into account in the Xfactor, which explains
why a method estimating the parameters on the image to be classified obtains better
results. It appears clearly that the MRF with Markovian estimation of the parameters
obtains better results than pixel-based methods when the contrast is locally low.

4.5.3 Results on Camargue

For the Camargue image, the Xfactor is not available. Therefore, we show the results
of the different methods with constant parameters and the polynomial estimation of
the antenna pattern (presented in Figure 4.10) in Table 4.4. First we can note that
as the water/land contrast is lower, using MRF as a classification method gives better
results. In this example, it is interesting to compare the performances of the MRF with
no re-estimation and the ones with the Markovian estimation. We can see that while
obtaining similar performances, there is a slight improvement when using the Markovian
estimation of the parameters with a constant initialization, while we obtain equivalent
results when the polynomial initialization is used. Note that the method used to obtain
the polynomial parameters can already be considered as an estimation of the parameters
on the image with regularization. Visual comparison of the constant MRF and the MRF
with a constant initialization and Markovian estimation of the parameters is presented
in Figure 4.17. We can note that we detect more water pixels in the near-nadir part of
the image using the Markovian estimation. The land/land layover present at the top-
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Method Estimation TPR FPR Error Rate MCC(water detection)

MLE
Constant 69.31% 5.61% 119.26% 0.5165
Polynomial 71.92% 7.03% 139.03% 0.4930
Xfactor 72.02% 6.83% 135.69% 0.4991

MAP
Constant 53.67% 0.34% 51.60% 0.6859
Polynomial 53.26% 0.33% 51.95% 0.6833
Xfactor 53.36% 0.33% 51.86% 0.6839

MRF
Constant 71.41% 0.72% 39.95% 0.7726
Polynomial 72.45% 0.75% 39.44% 0.7768
Xfactor 72.93% 0.79% 39.47% 0.7774

MRF (Region-based)
Constant 67.77% 0.52% 40.44% 0.7657
Polynomial 67.77% 0.52% 40.44% 0.7657
Xfactor 67.77% 0.52% 40.44% 0.7657

MRF (Markovian)
Constant 72.62% 0.72% 38.75% 0.7806
Polynomial 73.94% 0.77% 38.32% 0.7846
Xfactor 74.24% 0.80% 38.40% 0.7847

Table 4.3 – Results for the Po image

Method Estimation TPR FPR Error Rate MCC(water detection)

MLE Constant 83.26% 7.54% 54.85% 0.7023
Polynomial 86.20% 6.38% 46.07% 0.7407

MAP Constant 39.94% 0.32% 61.69% 0.5817
Polynomial 46.71% 0.25% 54.56% 0.6387

MRF Constant 91.27% 2.11% 19.41% 0.8847
Polynomial 92.53% 1.59% 15.50% 0.9074

MRF (Region-based) Constant 93.16% 2.95% 21.74% 0.8748
Polynomial 93.16% 2.95% 21.74% 0.8748

MRF (Markovian) Constant 91.80% 2.18% 19.22% 0.8863
Polynomial 92.78% 1.64% 15.52% 0.9074

Table 4.4 – Performance metrics for the Camargue image



66 CHAPTER 4. WATER/LAND CLASSIFICATION

(a) Input amplitude image

(b) MAP with Xfactor parameters

(c) MRF with Markovian parameters estimation

Legend: True positive True negative False positive False negative

Figure 4.16 – Performance metrics on the Po image
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(a) Input amplitude image (b) MRF with constant pa-
rameters

(c) MRF with Markovian
parameters estimation (con-
stant initialization)

Legend: True positive True negative False positive False negative

Figure 4.17 – Results on the Camargue image

right of the image accounts for the majority of the false detections, and is a problem
for the Markovian estimation of the parameters. Indeed, the initial classification labels
these pixels as water, and the re-estimation will lower the parameters of the water class
in this region, giving even more false detections.

4.5.4 Results on Kaw (SETHI)

We show the results for the Kaw image in Figure 4.18 and the performance metrics in
Table 4.5. Once again, the MRF classification obtain the best results. Here, the best
result comes from the region-based estimation method. The fact that this time the
region-based estimation has better result than the Markovian can be easily explained

Method Estimation TPR FPR Error Rate MCC(land detection)

MLE Constant 54.49% 7.06% 48.93% 0.4565
Polynomial 77.28% 10.96% 28.05% 0.6263

MAP Constant 27.99% 2.85% 73.39% 0.2963
Polynomial 58.67% 3.39% 42.98% 0.5282

MRF Constant 79.88% 7.78% 23.90% 0.6820
Polynomial 98.51% 5.70% 4.26% 0.9346

MRF (Region-based) Constant 93.28% 2.04% 7.71% 0.8888
Polynomial 98.52% 2.01% 2.46% 0.9626

MRF (Markovian) Constant 94.69% 10.43% 10.39% 0.8415
Polynomial 99.00% 9.58% 5.66% 0.9132

Table 4.5 – Performance metrics for the Kaw image
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(a) Input amplitude im-
age

(b) MRF with polyno-
mial parameters

(c) MRF with region-
based estimation

(d) MRF with Marko-
vian parameters esti-
mation

Legend: True positive True negative False positive False negative

Figure 4.18 – Results on the Kaw image

by looking at the visual results presented in Figure 4.18. Indeed, the classification using
the MRF with the polynomial parameters, shown in Figure 4.18(b), has some false
positives in the middle of the swath. In the case of a wrong initial classification, the
region-based parameter estimation is much more robust.

On this image, we can clearly see that having a good initial classification has a
strong importance for the Markovian estimation of the parameters. Indeed, the data
term defined in Equation 4.30 explicitly takes into account the classification. A erro-
neous classification could therefore propagate a wrongly classified region through the
iterations. For the region-based method for the estimation of the parameters, it will
only play a role during the first iteration. This also explains why the performances of
the region-based method have similar results using different initialization methods on
the other images.

4.6 Conclusion

We presented different methods for water/land classification in SWOT images. The
classification can be based on prior statistical information or on a prior of spatial
regularity such as enforced with the binary MRF.

Except in favorable cases where the water/land contrast is very strong, MRF
yield better results than pixel-wise ML or MAP. The originality of the proposed
methods relies on the use of non-uniform parameters. These parameters can either
be set using prior information or estimated in an alternated optimization framework.
We showed that using spatially variable parameters improves the results when the
radiometries of the classes are non constant. In the case of SWOT images, we have
non constant parameters mainly because of the antenna pattern (global variations)
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or local variations in the roughness of the surface (local variation). These algo-
rithms have been implemented for the SWOT mission. Our main contribution in
this chapter is the Markovian estimation of the parameters presented in subsection 4.4.4.

Future work includes exploiting multi temporal series, adapting the results presented
in Part III.
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Chapter 5

Detection of narrow rivers

5.1 Introduction

While the methods presented in chapter 4 are able to detect large water bodies, they
make the hypothesis that water and land are compact objects. This is generally true
when a fine resolution is available, but it does not actually hold in the case of SWOT’s
coarser resolution (from 60m to 10m in the range direction). This resolution means that
many targeted rivers (that have a width greater than 50m) might have a width under
one pixel. Hence, the hypothesis made by the Ising model used in the MRF framework
in chapter 4 is not fulfilled. To detect these rivers, a dedicated approach is presented in
this chapter.

Detection of thin structures is a widely studied problem in image processing, as it
leads to many applications. In (Amhaz et al., 2016), automatic road cracks detection is
performed. It first selects pixels that are likely to belong to the crack network based on
their intensities before connecting them. In (Rossant and others, 2011), a morphological
toolchain is used for the vessels detection in eye fundus images. Thin objects detection
has also been studied for SAR images in the framework of road detection, for mapping
applications. In (Tupin et al., 1998), a two-step approach is used; first a linear structure
detection is performed, then detected lines are connected using a high-level step. This
method has been applied to water detection in (Cao et al., 2011) with the addition of
a multiscale step, contrast inversion and a tolerance for curved line. A morphological
approach has also been applied to simulated SWOT images in (Grosdidier and others,
2012).

In this chapter, we present a two-step approach. The outline of the proposed method
is given in section 5.2. We present in subsection 5.2.1 the single-scale pixel-based de-
tection, and the object-based processing that follows is presented in subsection 5.2.2.
Finally, results are presented in section 5.3.
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Segment detection
(section 5.2.1)

Connection
(5.2.2.1)

Selection
(5.2.2.2)

Expansion
(5.2.2.3)

Observed image Output

Figure 5.1 – Overview of the proposed toolchain

5.2 Two-step approach

Based on the literature presented in section 5.1, we decided to propose a two step
approach for the detection of thin elements in SWOT amplitude images:

1. Line segment detection (pixel-based step): in the first step, the goal is to detect
straight portions of rivers based on the radiometric values of the pixels. We follow
the approach proposed by (Tupin et al., 1998).

2. Connection and selection step (object-based step): as only portions of the river
network are detected during the first step (either because some parts are not
straight lines or because the contrast is locally low), a second step is applied; can-
didate pairs of segments are connected, then the connections are chosen based on
a MRF model enforcing basic geometric properties of rivers. Finally an expansion
step is performed in order to go back from objects to pixels.

This approach is illustrated in Figure 5.1 and the first step is recalled in subsec-
tion 5.2.1, while the second step is described in subsection 5.2.2.

5.2.1 Low-level step

Principle In this section, our objective is to find small segments that are likely to
belong to a river. Because of speckle, we can only expect to retrieve portions of rivers
while keeping a low false alarm rate when working on small regions. These segments
will then be used as an initialization to the second step of the proposed method (sub-
section 5.2.2).

The general process is described in Figure 5.2. We test several rectangles as segment
candidates: at each pixel, Nd directions are tested, each time withNw different rectangle
widths. In an image of Si pixels, Si ×Nw ×Nd rectangles are tested. A score related
to the probability of belonging to a part of a river is then assigned to each rectangle.
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(a) Sample image (Line orienta-
tion = 40◦

(b) Orientation = 0◦ (c) Orientation = 45◦

Figure 5.2 – Illustration of the line detector. To detect a line, a rectangular detector
is applied at every pixel of the image. Nd = 16 directions and Nw = 5 widths are
tested. In this example the 16 directions are tested with a fixed width. A higher
score for the orientation at 45◦ than for the orientation at 0◦ will be obtained. See
www.sylvainlobry.com/phd for the animated image.

The computation of this score is described in subsubsection 5.2.1.1. For every pixel,
the rectangle centered on it having the best score is selected. A thresholding is then
applied to select pixels that are likely to belong to a river, and a post-processing step
is applied. This part is described in subsubsection 5.2.1.2.

5.2.1.1 Line detector

In this subsection, we briefly describe the computation of a score for a given rectangle
(centered on pixel s of direction d and width w). This score is computed by comparing
statistics computed in this rectangle (region 1 in Figure 5.2 which will be named r1 in
the following) to those of the two rectangles surrounding it (regions 2 and 3 in Figure 5.2
which will be named r2 and r3 respectively in the following).

D1 detector: D1 is a simple line detector based on a ratio edge detector (see (Touzi et
al., 1988). Following the work of (Tupin et al., 1998), a normalized ratio edge detector
between r1 and r2 can be defined as:

re(r1, r2) = 1−min

(
µr1
µr2

,
µr2
µr1

)
, (5.1)

where µrx is the distribution parameter in the rectangle rx (which is obtained using the
MLE and is given by the mean for an intensity image, which is Gamma distributed).
Based on re, the line detector D1 can be obtained:

D1(r1) = min (re(r1, r2), re(r1, r3)) . (5.2)

www.sylvainlobry.com/phd
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This detector response will be close to 1 where both contrasts between r1 and r2 and
between r1 and r3 are high. Note that it can be simplified to:

D1(r1) = 1−max

(
min

(
µr1
µr2

,
µr2
µr1

)
,min

(
µr1
µr3

,
µr3
µr1

))
(5.3)

D2 detector: D2 is a line detector based on the normalized cross correlation between
r1 and r2, r3. In (Tupin et al., 1998), it is defined as follows:

D2(r1) = min (cc(r1, r2), cc(r1, r3)) , (5.4)

with cc the discrete normalized cross-correlation computed as:

cc(rx, ry) =

√
nxny(µx − µy)2

1 + (nx + ny)(nxσ2x + nyσ2y)
, (5.5)

with nx the number of pixels in rx and σ2x the variance of rx. Compared to D1, D2

has the advantage of being resilient when a bright scatterer is present in one of the
rectangles to be tested.

Fusion: To use both detectors, a symmetric associative sum is used (Bloch, 1996):

D1D2(r1) =
D1(r1)D2(r1)

1−D1(r1)−D2(r1) + 2D1(r1)D2(r1)
, (5.6)

where x(r) is the score x(r) centered between [0, 1]. This score is associated to one
of the oriented rectangles tested for each pixel, but we want to have a single score at
each pixel. This can be obtained by selecting the maximum score from the different
orientations tested for a given pixel:

li = max
di∈Di

D1D2(di) , (5.7)

where Di is the set of orientations centered in i. The direction of the rectangle giving
the maximum score at pixel i is also saved in di, giving an image of directions d.

5.2.1.2 Post-processing:

While l contains a score for each pixel reflecting the probability to be a line, our objective
at this step is to obtain line segments. Therefore several operations are applied to this
image:

• Thresholding of the score image l to obtain a binary map;

• removal of isolated detections;

• segment selection.

Each of these steps is briefly explained below.
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Thresholding: The symmetrical associative sum defined in Equation 5.6 has the
following properties:

• conjunctive: max(D1(r), D2(r)) < 0.5⇒ D1D2(r) < min(D1(r), D2(r)) < 0.5;

• disjunctive: min(D1(r), D2(r)) > 0.5⇒ D1D2(r) > max(D1(r), D2(r)) > 0.5;

• compromise: D1(r) ≤ 0.5 ≤ D2(r)⇒ D1(r) ≤ D1D2(r) ≤ D2(r).

As a first approximation, using a threshold equals to 0.5 on l is adapted to our problem
as it will guarantee that at least one of the two detectors D1(r) or D2(r) has a value
larger than 0.5.

Removal of isolated detections: On the binary image representing segment detec-
tions, a first simple approach is applied to remove isolated detections; for pixel i, we
explore the neighbors restricted to the direction di. If no detection with a similar (the
same or ±1 in the quantified space of the directions) associated direction is found, the
pixel is considered as isolated and therefore removed from the binary detection image.

Furthermore, a local Hough transform is applied. On overlapping blocks of size
20× 20 a simple Hough transform restricted to Nd directions is applied. Each detected
pixel in the window vote for its associated direction. Only pixels belonging to the line
getting the maximum number of votes are kept.

Obtaining segments: A simple pixel to segment algorithm is then applied: for each
pixel i, we locally search pixels with similar directions in a neighborhood restricted to
its direction di. These pixels are then labeled giving a first set of segments. Finally,
small segments are removed, giving the final set of segments Seg.

Summary: Low-level step

We have presented a method for the detection of segments at the pixel level
mainly inspired from the works of (Tupin et al., 1998) and (Cao et al., 2011). It
is based on two detectors (one using a ratio between regions and the other the
cross correlation) that are fused and on a simple post-processing chain. Detected
segments can then be used as input for object-based detection.

5.2.2 Connection and regularization

5.2.2.1 Connection

At this stage, we have a set of segments Seg where most of the elements represent river
parts. Our goal is now to find a connection between pairs of segments in Seg. When
both segments belong to the same river, we seek a connection that will also belong to
this river. Therefore, we will look for the shortest path between two segments with
a distance that take into account the probability for the pixel to belong to the river.
Whereas a geodesic distance was used in (Perciano and others, 2016), we use a distance
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derived from the score obtained in the low-level step, allowing to take into account the
spatial context at a larger scale. This gives the following distance definition for two
neighbors:

∀a ∈ Nb , Dr(a, b) = 1− lb (5.8)

where Nb is the set of pixels that are neighbors to b (in this case, each pixel is a neighbor
for its 8 surrounding ones). Following graph theory, it can be generalized between any
two pixels a and b (not necessarily neighbors) as the shortest path between a and b.

To obtain the shortest path, we propose to use Dijkstra’s algorithm originally de-
scribed in (Dijkstra, 1959). This algorithm finds the shortest path between a source
node and all other nodes in a directed graph, where the distance to go from node a to
b is the weight of the vertex going from a to b. In our case the nodes are the pixels of
the image, and the weight from node a to b is Dr(a, b) defined in Equation 5.8. Since
the final distance is not normalized by the length of the connection, long connections
are penalized. The algorithm, when using a min-priority queue implemented with a
Fibonacci heap (Fredman and Tarjan, 1987), gives a complexity in O(|E|+ |V | log |V |)
where E is the set of edges and V the set of nodes. Note that in our case, the number
of edges is constant with respect to the number of nodes: |E| = 8|V |. This gives a total
complexity of:

O(|V | log |V |) . (5.9)

As running this algorithm for each pair of segment end-points on the whole image
is computationally expensive, we do the following steps (both illustrated in Figure 5.3):

• During the graph construction, we restrict the space search to a circle with a
diameter equals to the distance between the two extremities of the segments to
be connected;

• We restrict the connections to "compatible" pairs of segments. The compatibility
between two segments is defined by the proximity of their extremities (in our
experiments, we have found that a distance of 80 pixels works well).

In the following, the set of the connections between every pair of compatible segments
is called Co.

5.2.2.2 Selection

While the union of Seg and Co is likely to contain most parts of the rivers, it is clear that
Co may contain many unwanted connections (as it can be seen in Figure 5.1). In this
step, we want to select meaningful connections with respect to their distance defined
in Equation 5.8 and to their contributions to priors that can be made regarding a river
network:

• a river network should have few end-points;

• it has few intersections;
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3

2

1

Figure 5.3 – Connection step. We look for a connection between segments 1 and 2, as
they are close enough. On the contrary, segment 3 is too far from both 1 and 2. The
space search in which Dijkstra’s algorithm is applied is here restricted to the red circle.

• in most cases, an end-point of a segment has only one connection to another
segment;

• connections only fill gaps; therefore they should be short;

• long segments strongly indicate the presence of rivers so they should be part of
the network;

• it is moderately curved.

To enforce these priors, we use the MRF framework. Our goal is to find a labeling
x of Co such that:

∀co ∈ Co , xco =

1 if co belongs to the network,

0 otherwise .
(5.10)

Note that, the set of segments detected at the low-level step Seg is kept intact. We
propose to define an energy of the form:

x̂ = arg min
x
E(x) (5.11)

= DT (l,x)− log(p(x)) . (5.12)
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For the dataterm, we will use once again the score from the low-level step. However, as
the length of the connection is taken into account in the prior, we normalize the score
of the connection (changing the meaning of the score from the probability for it to be
a good connection to the general quality of the connection):

DT (l,x) =
∑
co∈Co

DT (l, xco) , (5.13)

where:

DT (l, xco) =


1
|co|

∑
i∈co

(1− li) if xco = 1

0 otherwise.
(5.14)

The prior term − log(p(x)) needs to encode the six assumptions made about the
shape of a river network. This will be done using six terms:

− log(p(x)) = KendPend(x) +KintPint(x) +KoverPover(x) +KL coPL co(x)

+KL segPL seg(x) +KalignPalign(x) . (5.15)

In the following paragraphs, we will explain for each of these terms how they enforce
the priors we set. We use the following indicator functions:

δ(x) =

1 if x = 0;

0 otherwise.
(5.16)

δ̄(x) =

0 if x = 0;

1 otherwise.
(5.17)

Also, we use the following convention for logical expressions: true is 1, false is 0. For the
sake of simplicity, we will define the images Ix and ISeg representing the connection
and segments in the image domain:

Ix,i =
∑
co∈Co
xco=1

δ̄(i ∈ co) (5.18)

ISeg,i =

1 if ∃se ∈ Seg s.t. i ∈ se

0 otherwise.
(5.19)

Note that while the image representing segments ISeg is a binary image indicating the
presence of a segment, the image representing connections Ix indicates the number of
connections including each pixel (this number is not limited to 1, as it can be seen
in Figure 5.1). In the following, the terms will be defined globally. Note that it is
straightforward to compute them locally from the global definition.
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A river network should have few end-points (Kend/Pend) In a river network,
endpoints generally correspond to sources or a connection with a compact region. With
respect to the number of detected segments, end-points should be sparse. Therefore, a
term Pend is added to penalize end-points in the network. To compute this term, we
count the numbers of segment extremities that are not linked to a connection in the
current labeling x:

Pend(x) =
∑

se∈Seg

(
δ(Ix,ex1(se)) + δ(Ix,ex2(se))

)
, (5.20)

where ex1(se) and ex2(se) are functions returning the pixels of both extremities of se.

A river network should have few intersections (Kover/Pover) It should be rare
to have intersections in a river network. To enforce this property, we use a term Pover

that counts the number of pixels appearing in more than one selected connection or in
a connection and a segment:

Pover(x) =
∑
i

(
δ̄ (ISeg,i and Ix,i) + δ̄(Ix,i > 1)× Ix,i

)
, (5.21)

where "and" is the pixel-wise logical operator.

In a river network, an end point of a segment has usually only one connection
to another segment (Kint/Pint) Except for bifurcations, segments only have one
connection to another segment. As this is a "rare" event in river networks, this is
penalized:

Pint(x) =
∑

se∈Seg

(
δ̄(Ix,ex1(se) > 1)× Ix,ex1(se) + δ̄(Ix,ex2(se) > 1)× Ix,ex2(se)

)
(5.22)

In a river network, connections only fill gaps; therefore they should be short
(KL co/PL co) Connections are only meant to fill gaps between detected segments at
the first step. Therefore, we want their cardinals to be small. This is enforced using:

PL co(x) =
∑
co∈Co
xco=1

|co| (5.23)

In a river network, long segments strongly indicate the presence of rivers
so they should be part of it (KL seg/PL seg) Inversely, it means that we want
to avoid connecting small segments (that are more likely to be false detections). Each
connected segment is then penalized by a term PL seg decreasing with the length of the
segment:

PL seg(x) =
∑

se∈Seg

δ̄(Ix,ex1(se))

|se|
+
δ̄(Ix,ex2(se))

|se|
(5.24)
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Segment
Connection

Figure 5.4 – Illustration of the prior terms introduced in Equation 5.15.

Rivers are moderately curved (Kalign/Palign) While rivers can have high sinuosity
at a large scale, between two segments the sinuosity index is expected to be low. To
enforce this property, we define the term Palign:

Palign(x) =
∑
co∈Co
xco=1

∠(seg1(co), seg2(co)) , (5.25)

Where functions seg1(co) and seg2(co) return the two segments connected by co.

These terms are illustrated on a simple example in Figure 5.4.

Optimization While being a binary labeling problem, the selection process cannot
be easily optimized by a graph-cut algorithm as the neighborhood configuration is not
regular. To allow for fast computation, we use the ICM algorithm presented in sub-
section 3.2.2. This method finds the closest local minimum from the initial solution
provided. To initialize it, we use a simple threshold on DT (l, xco) defined in Equa-
tion 5.14.

At the end of this step, we note Ĉo the set of connections such that xco = 1.
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5.2.2.3 Expansion

The union RN of Seg and Ĉo indicates the the presence of rivers as chains of pixels with
a width of 1 pixel. To recover a pixel-based classification and improve the positioning
of the rivers, a local classification step is needed. Several approaches can be applied,
notably level-sets based methods presented in section 4.2.

In our case, we decided to use a simple approach based on a denoising step, illus-
trated in Figure 5.5. This method has the advantage of being both simple, and does
not require new parameters. It is based on the following steps:

1. Connected component labeling is performed on RN . This can be done efficiently
with a two-pass algorithm.

2. For each connected component, we extract a rectangular region, with a small
padding (in our implementation, it is set to 20 pixels), see Figure 5.5a.

3. We apply a denoising method on the region. In our case, we apply NL-SAR
(Deledalle et al., 2015). After this step, we obtain the result shown in see Figure
5.5c

4. The denoised region is thresholded based on the expected water radiometry (either
obtained theoretically or from an iterative process, see section 4.4). This gives
the result shown in Figure 5.5d.

5. A connected component labeling is performed on the binary image.

6. We select the components from the binary image that have large intersections
with RN (in our implementation, more than 10% of the size of the connected
component). This is illustrated in Figure 5.5e.

As we do not want to suppress previously selected connections, the response from this
step is combined with the output from the selection step (using a simple logical or on
the binary maps).

Summary: Object-based detection

Detected segments from the pixel-based step only cover parts of the river network.
To retrieve it, we use a toolchain taking as inputs the set of segments. First,
connections between candidates pairs are performed using Dijkstra’s algorithm.
Then, these connections are selected based on their contribution to the global
river network. This is done using a MRF defined on the connections. Finally, a
simple expansion algorithm is applied to recover a pixel-based detection.

5.3 Results

We evaluate the proposed method on the Camargue image presented in Figure 4.14(c).
This image is interesting for our algorithm as it contains many narrow rivers. The results
are shown in Figure 5.6 and a zoom on a region of interest is shown in Figure 5.7.
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(a) Input image

(b) Input image (c) Denoised image (d) Thresholded image (e) Output

Figure 5.5 – Illustration of the expansion step. NL-SAR denoising is applied locally for
each connected component of the river network RN . This denoising is then thresholded
and used to obtain the pixel-based classification.
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(a) Input image (b) Segment detection (c) Connection

(d) Initialisation of ICM (e) Selection of the connections (f) Expansion

Figure 5.6 – Illustration of the different steps of the proposed approach on the Camargue
image.
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(a) Input image (b) Segment detection (c) Connection

(d) Initialisation of ICM (e) Selection of the connections (f) Expansion

Figure 5.7 – Illustration of the different steps of the proposed approach on a zoom of
the Camargue image.

Method TPR FPR Error Rate MCC(water detection)
MRF (Markovian) 92.78% 1.64% 15.52% 0.9074
MRF + Rivers 93.08% 1.69% 15.46% 0.9080

Table 5.1 – Results for the Camargue image

The segment detection has been tuned so that it has only a limited number of
false detections. The connection step finds a link between all the close segments. The
selection is based on an initialization made by a simple thresholding of the associate
score of each connection. Finally, the expansion step recovers a pixel-based detection.

This algorithm is designed to detect only narrow elements. Therefore we evaluate it
combined with the results obtained with the MRF with Markovian parameters estima-
tion presented in chapter 4. To combine the results, we simply use a logical "or". The
numerical results (using the metrics defined in section 4.5) are presented in Table 5.1
and visual results are presented in Figure 5.8. We can see that the global water error
rate is only improved by a fraction (-0.06%) with the addition of the rivers, which is not
surprising considering that narrow rivers only account for a small fraction of the pixels
in the image.

5.4 Conclusion

We presented a method combining two main steps for the detection of thin elements
in SAR images. The first step performs segment detection on small regions, while
the second one connects these detections in a meaningful way with respect to the
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(a) Input amplitude image (b) MRF with Markovian
parameters estimation (poly-
nomial initialization)

(c) MRF with Markovain
parameters estimation +
Rivers

Legend: True positive True negative False positive False negative

Figure 5.8 – Results on the Camargue image

geometrical properties of river networks. This algorithm has been designed for the
detection of narrow rivers in SWOT images. We show some results on simulated
SWOT images. For this chapter, our main contribution is the definition of the
different steps of the object-based detection. While the connexion step is based on
a widely used algorithm (Dijkstra), the distance definition has been defined from
the low-level measures. The selection step uses original priors and is completed
by a simple expansion step. From the results, it occurs that the algorithm should
not necessarily be run systematically, but only when narrow rivers are of partic-
ular interest. Indeed, the improvement of the global error rate is, as expected, marginal.

While this algorithm detects narrow rivers that would not be retrieved with a clas-
sical contextual method (such as the ones presented in chapter 4), it is computationally
expensive. Further work should be devoted to the simplification of the proposed method
so it could be run systematically in the SWOT processing chain. Also, it requires an
extensive and currently manual parameters tuning. Each step should be improved by
either finding an alternative algorithm requiring less parameters, or finding a way to
automatically tune them.
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Part III

Processing of multi-temporal series
of SAR images





Chapter 6

Decomposition models for
multi-temporal series of SAR
images

6.1 Introduction

While the work presented in Part II was dedicated to the simple case of binary clas-
sification in single amplitude images, we now tackle the case of multi-temporal SAR
images of urban areas. In these images, we will target the following applications:

• strong scatterers detection;

• regularization;

• change detection.

We have seen in section 2.3 that SAR images suffer from strong fluctuations related
to the speckle phenomenon. While containing information about the sub-resolution
texture of the scene, speckle is often regarded as an undesirable noise for image
interpretation tasks. Speckle is then typically modeled as a multiplicative noise.
Another peculiarity of SAR images of urban areas is their high dynamic range:
man-made structures such as buildings, fences or transmission towers produce very
strong back-scatterings, with intensities much larger than the surrounding areas.
This is illustrated in Figure 6.1. Such scatterers are especially numerous in urban
areas. Therefore, it can be interesting to take into account the strong scatterers when
regularizing images. In this chapter, we will propose a method which is able to jointly
detect the strong scatterers and regularize the image.

The simplest way to reduce speckle fluctuations is spatial multi-looking which
amounts to averaging pixel values within a sliding window. This speckle variance reduc-
tion is obtained at the cost of a resolution loss proportional to the size of the averaging
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Figure 6.1 – Illustration of the speckle and scatterers phenomena on an amplitude image
acquired by TerraSAR-X (Stripmap mode) in Saint-Gervais, France (GPS coordinates:
45.910877, 6.705635). Points corresponding to sides of the bridge have a radiometry of
approximately 10 times those of surrounding points.

window. While it may produce satisfying results in homogeneous areas, it strongly blurs
textured areas, edges between regions and bright scatterers.

Numerous approaches have been proposed to prevent the introduction of blur by
mixing values from distinct regions. Lee et al. (Lee et al., 2003) locally select the
best window among a few oriented windows. The IDAN algorithm (Vasile et al.,
2006) builds an adaptive window by region growing. Several methods have been
derived from the non-local means (NL-means) approach by Buades et al. (Buades
et al., 2005). These methods select similar pixels in an extended window based
on patch-similarity (Deledalle et al., 2009; Deledalle et al., 2011; Chen et al., 2011;
Zhong et al., 2011; Parrilli et al., 2012; Cozzolino et al., 2014; Deledalle et al.,
2015). Another family of methods reduce speckle by regularization, i.e., by comput-
ing the maximum a posteriori estimate under a given prior. Wavelet-based approaches
model the distribution of wavelet coefficients (Achim et al., 2003; Argenti et al., 2006;
Xie et al., 2002b). Total variation (TV) regularization penalizes variations between
neighboring pixels while preserving sharp edges (Rudin et al., 1992). Total varia-
tion has been applied to the regularization of SAR amplitudes (Aujol et al., 2003;
Denis et al., 2009; Palsson et al., 2012), SAR intensities (Aubert and Aujol, 2008;
Steidl and Teuber, 2010) and log-transformed intensities (Bioucas-Dias and Figueiredo,
2010) using different optimization strategies (discrete optimization by graph-cuts, gra-
dient descent, Douglas-Rachford splitting or the alternating directions method of multi-
pliers). Isolated strong scatterers are challenging for speckle reduction methods because
they generally break the statistical assumptions made about the radar scene: repetition
of similar patches within the search window (patch-based methods), sparse representa-
tion in the wavelets domain (wavelets-based methods), or piece-wise constant regions
(TV minimization). An approach that would not specifically handle the strong scatter-
ers separately is illustrated in Figure 6.2. We can see that it is necessary to identify and
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Signal

MLE with the scatterer (160.5873)

MLE without the scatterer (99.3574)

(b) Noisy version of signal of figure (a)
and MLE of the signal including the
bright scatterer and excluding it.

Figure 6.2 – Illustration of the effect of the presence of a strong scatterer for regu-
larization. When the strong scatterer is included in the computation of the MLE, it
over-estimates the true radiometry. By excluding the strong scatterer, the estimation
is close to the true radiometry.

process these points separately to prevent from spreading these large values. Rather
than building a statistical model of spatial configurations (edges, textures) in SAR im-
ages, many works directly model heterogeneity due both to the presence of strong
scatterers and to geometrical features under a stationary assumption (Touzi, 2002;
Vasile et al., 2010). It is then possible to derive estimators robust to fluctuations
of radiometry within the neighborhood (Pascal et al., 2008).

On the one hand, statistical models that describe geometrical structures such as
edges in SAR images generally fail to account for point-like strong scatterers; on the
other hand, models of heterogeneous clutter based on a stationary assumption are lack-
ing geometrical information. The work that is presented in this manuscript attempts to
account for both the geometrical content and the strong scatterers in an explicit way,
i.e., to recover the geometrical part and detect the strong scatterers.

Strong scatterers can be detected using likelihood ratio tests (Lopes et al., 1992;
Lopes et al., 1993). These detectors compare the values in the center of a window
with the rest of the window, considered as purely background. In dense urban areas,
the presence of other point-like scatterers in the vicinity strongly deteriorates the
performance and makes such local processing ill-suited.

We also aim at doing change detection between SAR images. During the last few
years, the launch of constellations of sensors has allowed to obtain images with a short
revisiting time. For instance, using Sentinel-1A and Sentinel-1B from ESA, one can have
a new acquisition of a specific site every 6 days. This can be helpful for applications
such as disaster monitoring, provided that adapted processing methods are developed.
Such methods generally include change detection in a time series.

This problem was first tackled using difference between pairs of images (Singh, 1989)
which has the drawback of not being well adapted to the multiplicative nature of the
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speckle (see chapter 2). Comparison between SAR images is usually made using ratios
such as in (Moser and Serpico, 2006). It can also be modeled by statistic tests such as
hypothesis tests (Lombardo and Oliver, 2001; Conradsen et al., 2016). However, these
hypothesis tests require the estimation of the radiometry of the scene. This can be done
using patch-based estimators such as in (Su et al., 2014a).

In this work, we aim at performing jointly the detection of strong scatterers with the
estimation of the background radiometry. We aim at providing models that explicitly
take into account the strong scatterers and that can be applied to multi-temporal
stack of images. When doing this joint detection and estimation, it is also possible to
account for changes in the strong scatterers.

The idea of decomposing the SAR signal into several components is not
new and led to very successful approaches in different SAR modalities. The
reconstruction of a sparse distribution of scatterers has first been intro-
duced in (Cetin and Karl, 2001), where a smoothing and a sparsity induc-
ing penalty were applied to the same image. Sparse regularization has been
further investigated under the concept of compressed sensing (Ender, 2010;
Potter et al., 2010) and successfully applied to tomographic SAR focusing (Zhu
and Bamler, 2010). Beyond the recovery of point-like sources, decomposition under a
dictionary of SAR signatures has been considered in (Varshney et al., 2008). Detection
of permanent scatterers and possibly of distributed scatterers is at the heart of
permanent scatterers processing in multi-pass interferometry (Ferretti et al., 2011;
Fornaro et al., 2009). Decompositions into different scattering behaviors is also central
to the analysis of polarimetric images, see for example (Yamaguchi et al., 2011). Other
decomposition schemes have been considered, in particular to analyze the anisotropic
behavior of scatterers from sub-aperture decomposition.

The approach followed in this chapter is in the spirit of image decomposition
methods studied in the field of image processing (Aujol et al., 2006; Yin et al., 2005;
Elad et al., 2005; Gilles, 2009). These works consider the decomposition of a given
image into several components, one typically containing geometrical information (i.e.,
edges), another capturing the textural information (oscillating components), and the
remaining component with the noise. These decompositions are obtained by enforcing
the sum of all components to match the initial image while each component gets
penalized by a different regularization term promoting a different property (piece-wise
constant image, oscillating image).

While the data we will use and the applications are different than those of Part II,
we will see that the developed method also relies on MRF. Therefore, we will use an
optimization technique based on graphcuts which is an extension of the one used in
chapter 4, and the techniques that are developed in this chapter could also be of benefit
to the methods developed for SWOT: we did not tackle the case of multi-temporal
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SWOT images, but it could be done using the formulation presented in this chapter.
Also the non-optimal optimization method which will be presented in subsection 6.3.2
could also be used to process large SWOT images.

This work can be seen as an extension of the decomposition model presented in
(Denis et al., 2010). In the following, we present the general framework for our de-
composition models in subsection 6.2.1. The problems are first formulated as detection
problems in subsection 6.2.2 then as estimation problems in subsection 6.2.3. We show
how the proposed models can be exactly optimized in subsection 6.3.1 and how the
computational cost of the minimization can be reduced in subsection 6.3.2. Finally,
we include a discussion about the setting of the different parameters in section 6.4.
Presentation of the results for the targeted applications is done in chapter 7.

6.2 Decomposition models

6.2.1 A general framework

Modeling urban SAR images as a sum of components Our goal is to explain a
multi-temporal stack of T images v where each image contains N pixels. We consider
the following model:

∀t ∈ {1, . . . , T},∀i ∈ {1, . . . , N}, vt,i = ut,i · ξt,i (6.1)

= (bt,i + st,i) · ξt,i , (6.2)

where u is the underlying radiometry of the scene (i.e. the speckle-free version of v) that
we seek to retrieve), b is a background component and s is a scatterer component. The
general idea of the proposed methods is to find these two components jointly instead
of following the more classical approach, where we would seek to retrieve u directly. In
the MAP framework, estimating u directly would be expressed in terms of an energy
to minimize:

E(u) = DT(u,v) +R(u) , (6.3)

where DT(u,v) is a term penalizing a model u that is not likely considering the ob-
servation v (we will take the negative log-likelihood of the Rayleigh distribution in the
case of amplitude SAR data) whereas R(u) encodes prior knowledge on properties that
we expect in the model. We have seen in section 6.1, that classical priors (such as TV)
fail because of the presence of strong scatterers. Using the decomposition presented
in Equation 6.2 and by making the assumption that both components are independent
gives the following type of energy to minimize:

E(u) = DT(b+ s,v) + βBG R(b) + βS R(s) , (6.4)

where βBG and βS are weights to balance the terms. By doing so, we are able to
put different priors on the background b and on the scatterers s components. In the
following, we present three different models using different priors. In the following, the
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prior on the background R(b) is noted ψ(b) and the prior on the scatterer R(s) is noted
λ(s).

Different priors for different applications We have seen in section 6.1 that a
widely-used prior for image regularization is that the resulting image should have a low
total variation. This model makes the assumption that the image can be described by
constant regions with sharp edges. Whereas this model is not well suited when bright
scatterers are present in the image, it can be efficiently applied to our background
component as the bright scatterers are not present in it. Since the proposed models
aim at processing multi-temporal stacks of images, we present a simple extension of the
spatial TV penalization to the temporal domain. This extension makes the assumption
that changes in time are also rare (which holds in the case of SAR images, thanks to
the radiometric stability property):

TVα3D(b) =
T∑
t=1

∑
i∼j
|bt,i − bt,j |+ α

T−1∑
t=1

N∑
i=1

|bt+1,i − bt,i| . (6.5)

This expression makes the hypothesis that the data are perfectly calibrated and reg-
istered. Using this formulation makes it possible to set the spatial and the temporal
regularization independently via the parameter α.

A strong scatterer can be defined as a point which radiometry is an order of mag-
nitude higher than its surrounding. From this definition, it follows that the bright
scatterer component should be sparse. The straightforward way to model this assump-
tion is to consider the pseudo-norm L0:

||s||0 =

T∑
t=1

N∑
i=1

δ̄(st,i) , (6.6)

where δ̄ is the operator defined in Equation 5.17. However when using the L0 pseudo-
norm as a prior, the minimization of the energy defined in Equation 6.3 is combinatorial
(discontinuous and non-convex) which can lead to a computationally heavy optimization
process. Typically, the L0 pseudo-norm is relaxed to a L1 norm (this is known as a
convex relaxation):

||s||1 =

T∑
t=1

N∑
i=1

|st,i| . (6.7)

However, we will see in section 6.3 that when using TV as the prior on the background, a
model which uses the pseudo-norm L0 for the regularization of the scatterer component
can be optimized efficiently. In section 7.1 we present a comparison of L0 and L1 in the
framework of scatterer detection. We show that even though L0 is often relaxed to L1,
using L0 gives better results.

Using different functions for ψ and λ, we derive three models:

• TVL0 Regularization (TVR): in this model, we use ψ = TVα3D with α a finite
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number (in our experiment, it will be set to 1) and λ = ||.||0. It is well adapted
for applications in regularization or strong scatterers detection.

• TVL0 One Background (TV1BG): this model uses ψ = TV∞3D and λ = ||.||0.
By using an infinite weight on the temporal regularization, no variations are al-
lowed for one pixel in the time direction, i.e. ∀i, b1,i = b2,i = . . . = bT,i. It is based
on the assumption that most changes are reflected by changes in strong scatterers
and that one background can be sufficient to represent the time series. We will
see that doing so greatly reduces the memory need for the model optimization.
This model is well suited to scatterers detection.

• TVL0 One Change (TV1C): In this model, we also seek only one background
(so it uses ψ = TV∞3D). It differs from TV1BG as it will not only try to obtain
a sparse scatterers component but will also try to obtain a sparse number of
temporal changes in it. For the problem to stay tractable, we put constraints on
the values one site in the scatterers component can take over time:

– it can be always equal to 0 (no strong scatterer);

– it can have the same positive value at every date (no change);

– it can be 0 until a date tapp then be a constant positive value (appearing
scatterer);

– it can be a constant positive value until tdisp then be equal to 0 (disappearing
scatterer).

We can then define the change map c(s) as:

ci(s) =



0 if ∃r > 0, ∀t ∈ [1, T ], st,i = 0 or st,i = r;

1 if ∃r > 0, ∀t ∈ [1, tapp[, st,i = 0

and ∀t ∈ [tapp, T ], st,i = r;

2 if ∃r > 0, ∀t ∈ [1, tdisp[, st,i = r

and ∀t ∈ [tdisp, T ], st,i = 0 ,

(6.8)

with r > 0. To enforce that both the scatterer component and the number of
changes in it should be sparse, we use λ(s) = ||s||0 + βC

βS
||c(s)||0, where βC is a

weight to balance both terms. By definition, this model is particularly well suited
for change detection.

6.2.2 Interpretation of the decomposition as a detection problem

We first tackle the problem of the detection of a strong scatterer at a given pixel (and a
change at a given site in the case of the TV1C model) for a given value of the background.
We will see that under the L0 prior, this problem is formalized as a Likelihood Ratio
Test (LRT). We first start with the simpler case of detecting a strong scatterer for the
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models TVR and TV1BG before formalizing the joint detection of strong scatterers and
their changes for TV1C.

Detection of a strong scatterer Given a background value bt,i, the strong scatterer
detection can be expressed as a choice between two hypotheses: the absence (H0) or
the presence (H1) of a strong scatterer in addition to the background scatterers:H0 : st,i = 0 ;

H1 : st,i > 0 .
(6.9)

Under the assumptions of uncorrelated speckle and point-like scatterers, this hypothesis
test can be performed as a LRT:

log
p(vt,i|ut,i = bt,i + st,i)

p(vt,i|ut,i = bt,i)

H1

≷
H0

βS . (6.10)

In Equation 6.10, we know the value of the observation, and the background compo-
nent’s value is an input to our problem. However, the value of the strong scatterer
component st,i is unknown. Replacing it by the value given by the MLE leads to the
Generalized Likelihood Ratio Test (GLRT):

max
st,i>0

log p(vt,i|ut,i = bt,i + st,i)
H1

≷
H0

βS + log p(vt,i|ut,i = bt,i) (6.11)

Detection of the strong scatterers and their changes We now examine the case
of the detection of a strong scatterer and its potential change at a pixel i in the time
series given the constant background value bi. We recall that we make the (strong)
hypothesis that at most one change is present in the time series. This problem can be
expressed as a decision between four hypotheses:

• H0: no strong scatterer is present at pixel i.

• H1a: a strong scatterer is present at pixel i at all dates.

• Happ
1b : a strong scatterer appears at a certain date.

• Hdisp
1b : a strong scatterer disappears at a certain date.

We can also formalize intermediate hypotheses:

• H1: a strong scatterer is present at pixel i (at all or only a fraction of the dates).

• H1b: a strong scatter is present but not at all dates.

These hypotheses allow us to express the problem as a hierarchical hypothesis test as
presented in Figure 6.3. These hypotheses tests are also performed using a LRT. First
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scatterer ?
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Figure 6.3 – Hierarchical hypothesis test for the detection of strong scatterer and its
potential change

.
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the negative log-likelihoods corresponding to the different hypotheses are defined:

L0(bi) = −
∑
t

log p(vt,i|ut,i = bi) (6.12)

L1a(bi, r) = −
∑
t

log p(vt,i|ut,i = bi + r) (6.13)

Lapp
1b (bi, r, tapp) = −

tapp−1∑
t=1

log p(vt,i|ut,i = bi)−
T∑

t=tapp

log p(vt,i|ut,i = bi + r) (6.14)

Ldisp
1b (bi, r, tdisp) = −

tdisp−1∑
t=1

log p(vt,i|ut,i = bi + r)−
T∑

t=tdisp

log p(vt,i|ut,i = bi) , (6.15)

where r is a positive value (to be estimated and considered known at this point) corre-
sponding to the constant radiometry of the strong scatterer when it is present. We first
solve the case under H1: we know that we have a strong scatterer and we must decide
whether it is constant (H1a) or changing (H1b) over time. This is expressed as a LRT:

log
p({vt,i}|H1b)

p({vt,i}|H1a)

H1b

≷
H1a

βC (6.16)

L1a(bi, r)− L1b(bi, r)
H1b

≷
H1a

βC (6.17)

The value of bi and r are known but solving Equation 6.17 requires knowledge of
L1b(bi, r). It it therefore replaced by its MLE L̂1b(bi, r):

L̂1b(bi, r) = max

(
max
tapp
Lapp
1b (bi, r, tapp),max

tdisp
Ldisp
1b (bi, r, tdisp)

)
. (6.18)

The computation Equation 6.18 is done using an exhaustive search; both Lapp
1b (bi, r, tapp)

and Ldisp
1b (bi, r, tdisp) are tested for each possible date. Using the MLE for the estimation

of L1b gives the following GLRT:

L1a(bi, r)
H1b

≷
H1a

L̂1b(bi, r) + βC . (6.19)

We also need to solve the upper level of the hierarchical test, which is the strong scatterer
detection (choice between H0 and H1). This is almost equivalent to Equation 6.10,
except that this time the test is performed once for each pixel (and not at each date):

log
p({vt,i}|H1)

p({vt,i}|H0)

H1

≷
H0

βS (6.20)

L0(bi)− L1(bi, r)
H1

≷
H0

βS (6.21)
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In order to solve Equation 6.21, we need to estimate the value r. Once again, the MLE
is used, giving the following GLRT:

L0(bi)
H1

≷
H0

min
r>0
L1(bi, r) + βS , (6.22)

where L1(bi, r) is given by:

L1(bi, r) = min
(
L1a(bi, r), L̂1b(bi, r) + βC

)
. (6.23)

6.2.3 Reformulation as an estimation problem

The detection problems from the previous part can be formalized as estimation prob-
lems. In this framework, Equation 6.11 is equivalent to:

ŝt,i(bt,i) = arg min
st,i≥0

(− log(p(vt,i|ut,i = bt,i + st,i)) + βSδ̄(st,i)) . (6.24)

This equation can be simply expressed for the entire stack of images:

ŝ(b) = arg min
s≥0

(−
∑
i

∑
t

log(p(vt,i|ut,i = bt,i + st,i)) + βS||s||0) . (6.25)

In a similar way, Equation 6.23 can be written as:

ŝ(b) = arg min
r ≥ 0

tc ∈ [1, T ]N

(−
∑
i

∑
t

log(p(vt,i|bi + st,i)) + βS||d||0 + βC||c(s)||0)

(6.26)

s.t. ∀i,∀t, st,i ≥ 0

∀i,∀t, δ(ci(s))(st,i − ri) = 0

∀i,∀t < tci, δ(ci(s)− 1)st,i = 0

∀i,∀t ≥ tci, δ(ci(s)− 1)(st,i − ri) = 0

∀i,∀t < tci, δ(ci(s)− 2)(st,i)− ri = 0

∀i,∀t ≥ tci, δ(ci(s)− 2)st,i = 0

where d is an image such that:

di =

1 iff ∃t s.t. st,i > 0

0 otherwise.
(6.27)

The constraint on Equation 6.26 are required to ensure that in the "no change" case the
radiometry of the strong scatterer is constant, in the case of an appearing strong scat-
terer it is 0 before the appearance and a constant value after, and that in the case of a
disappearing one, it is constant before the disappearance date and a constant value after.
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We can not directly solve Equation 6.25 and Equation 6.26 as they are function of the
value of the background b which is unknown. We have seen in section 6.1 that in order
to be able to properly estimate the background, strong scatterers must be excluded.
Thus we propose to jointly estimate both components. By adding the desired prior on
the background, it gives the equation that was sought in the first place:

• In the case of the TVR model:

(b̂, ŝ) = arg min
b ≥ 0

s ≥ 0

−
∑
i

∑
t

log(p(vt,i|bt,i + st,i)) + βBG TVα3D(b) + βS ||s||0

(6.28)

• TV1BG model:

(b̂, ŝ) = arg min
b ≥ 0

s ≥ 0

−
∑
i

∑
t

log(p(vt,i|bt,i + st,i)) + βBG TV∞3D(b) + βS ||s||0

(6.29)

• TV1C model:

(b̂, ŝ) = arg min
b ≥ 0

r ≥ 0

tc ∈ [1, T ]N

−
∑
i

∑
t

log(p(vt,i|bt,i + st,i)) + βBG TV∞3D(b)

+ βS||d||0 + βC||c(s)||0 (6.30)

s.t. ∀i, ∀t, st,i ≥ 0

∀i, ∀t, δ(ci(s))(st,i − ri) = 0

∀i,∀t < tci, δ(ci(s)− 1)st,i = 0

∀i,∀t ≥ tci, δ(ci(s)− 1)(st,i − ri) = 0

∀i,∀t < tci, δ(ci(s)− 2)(st,i)− ri = 0

∀i,∀t ≥ tci, δ(ci(s)− 2)st,i = 0

Note that even though in Equation 6.29 and in Equation 6.30 the background component
is a function of time, it is not allowed to vary along time (from the TV∞3D prior), and
the stack of background components can be replaced by a single image.
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Summary: Decomposition models

We presented three models adapted for the processing of multi-temporal series
of urban SAR images. The main idea is to separate the image as a sum of two
components: the background and the strong scatterers.
We can then apply meaningful priors on each of the components. By selecting
different priors, we propose three models:

• TVR, for the regularization of time series.

• TV1BG, for an efficient strong scatterers detection and a mean representa-
tion of the background.

• TV1C, for change detection.

We have first presented the models as detection problems. We have then pre-
sented a reformulation as estimation problems which will allow us to apply an
exact optimization method in the next section.

6.3 Optimization

6.3.1 Exact optimization using graph-cuts

Graph construction Because of the L0 term, previously defined energies (Equa-
tion 6.28, Equation 6.30 and Equation 6.30) are non-convex. As seen in section 6.1, this
typically prevents the model from being efficiently optimized and is generally solved by
replacing the L0 pseudo-norm by an L1 norm. However, when an optimization problem
involves (possibly non-convex) separable terms and convex pairwise terms, it can be
restated to a minimum cut / maximum flow search on an S-T graph (Ishikawa, 2003).
In (Pock et al., 2008) a continuous variational counterpart was proposed to solve the
same type of problems. With the particular choice of the total variation as a prior for
the background component, the defined energies can be solved using this method.

To use this optimization method, we need the energy to be formulated as:

x̂ = arg min
x

∑
i

∑
t

f0(xt,i) +
∑

(i,t)∼(j,t′)

f1(xi,t, xj,t′) , (6.31)

where f0 is a function for the separable terms, and f1 for the pairwise terms (and
f1 should be convex). This function only optimizes a single variable. However, we
have expressed in Equation 6.25 and in Equation 6.26 the optimal value for a strong
scatterer given a background. Hence, we can easily define the single-variable problem
as in Equation 6.31. For models TVR and TV1BG and data in single-look amplitude
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distribution (hence following a Rayleigh law), it yields:

x = b (6.32)

f0(xt,i) = 2 log(xt,i + st,i(xt,i)) +
v2t,i

(xt,i + st,i(xt,i))2
+ βSδ̄(st,i) (6.33)

f1(xt,i, xt,j) = βBG|xt,i − xt,j | (6.34)

f1(xt,i, xt′,i) = αβBG|xt,i − xt′,i| (6.35)

Our problem is now stated following Equation 6.31 so it can be solved using
Ishikawa’s method (Ishikawa, 2003). As in chapter 4, the main idea behind it is to
build a graph such that an S-T cut in this graph corresponds to a solution of our prob-
lem, and that the energy of solution equals the value of the cut. It is then possible
to use one of the algorithms developed in the field of Computer Science to compute a
minimum-cut (e.g. (Boykov and Kolmogorov, 2004) which is particularly adapted to
grid-structured graphs). Details about the graph construction can be found in subsec-
tion 3.2.2. In the particular case of this model, vertical links going from one quantization
level to another for the same site are not only set to the data-term value, but to f0(x),
which includes the energy for the scatterer component.

In the case of TV1R, the graph has one node for each pixel at each date and each
quantization level. For large series of images, this can raise problems in memory load.
One advantage of models TV1BG and TV1C is that, as they do not allow variations
in the background, Equation 6.35 can be replaced with f1(xt,i, xt′,i) = ∞ (as α = ∞).
Therefore, the graph can be constructed with only one node for each pixel at each
possible quantization level. In this latter case, we need to sum all the contributions for
the possibly changing strong scatterers; in the case of TV1BG:

f0(xi) =
∑
t

2 log(xi + st,i(xi)) +
v2t,i

(xi + st,i(xi))2
+ βSδ̄(st,i) (6.36)

In the case of TV1C, we also need to take into account the prior on the changes:

f0(xi) =
∑
t

2 log(xi + st,i(xi)) +
v2t,i

(xi + st,i(xi))2
+ βSδ̄(st,i) + βCδ̄(ct,i(s(xi))) (6.37)

Scatterer component computation In order to actually build the graph, we need
to compute st,i(bt,i). We start by the expression of the GLRT of Equation 6.11. At a
given pixel, under Rayleigh distribution, we have the following expression of the MLE
for the model ut,i = bt,i + st,i given an observation vt,i:

ût,i = arg max
ut,i

log(p(vt,i|ut,i)) (6.38)

= arg max
ut,i

log

(
2vt,i
u2t,i

)
−
v2t,i
u2t,i

(6.39)
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Then:

∂

∂ut,i
log(p(vt,i|ut,i)) = 0⇐⇒ ∂

∂ut,i

(
log

(
2vt,i
u2t,i

)
−
v2t,i
u2t,i

)
= 0 (6.40)

⇐⇒ − 2

ut,i
+

2v2t,i
u3t,i

= 0 (6.41)

=⇒ ut,i = vt,i (6.42)

Hence the MLE of ut,i is ût,i = vt,i, then ŝt,i = vt,i − bt,i, giving:

max
st,i>0

log p(vt,i|ut,i = bt,i + st,i) = log

(
2

vt,i

)
− 1 (6.43)

and Equation 6.11 can be written as:

max
st,i>0

log p(vt,i|ut,i = bt,i + st,i)
H1

≷
H0

βS + log p(vt,i|ut,i = bt,i) (6.44)

⇐⇒
v2t,i
b2t,i
− log

(
v2t,i
b2t,i

)
H1

≷
H0

βS + 1 (6.45)

This computation holds for the choice of the Rayleigh distribution. In section 2.3, we saw
that Rice distribution is more adapted when a scatterer is dominant in the resolution cell
(which is the case when we consider a non-null strong scatterer component). However,
the MLE of ut,i can not be derived in closed-form (as in the case of Equation 6.42 for
the Rayleigh distribution) and must be numerically evaluated. Another advantage of
using the Rayleigh distribution is that the GLRT only depends on the ratio between
the observation and the background vt,i

bt,i
which allows us to set βS using a desired

constant false alarm rate (see section 6.4). For the scatterer detection, in the cases of
TVR and TV1BG, using Equation 6.45 and the equivalence between Equation 6.11 and
Equation 6.24 gives:

ŝt,i(bt,i) =


vt,i − bt,i if vt,i > bt,i

and
v2t,i
b2t,i
− log

(
v2t,i
b2t,i

)
> βS + 1

0 otherwise.

(6.46)

For the model TV1C, the same formula applies over the hierarchical hypothesis test
shown in Figure 6.3. The only difference in the resolution of both models is the com-
putation of the optimal scatterer value. In the case of TV1C, the strong scatterer at
one site only takes at most one single strictly positive value. In the case of a constant
strong scatterer which is present at all date (H1a), the MLE of ûi is:

ûi = arg max
ui

T∑
t=1

log(p(vt,i|ui))

T
. (6.47)
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Then:

∂

∂ui

T∑
t=1

log(p(vt,i|ui))

T
= 0⇐⇒

T∑
t=1

(
− 2
ui

+
2v2t,i
ui3

)
T

= 0 (6.48)

⇐⇒ − 2

ui
+

1

T · u3i
· 2

T∑
t=1

v2t,i (6.49)

⇐⇒ u2i =

T∑
t=1

v2t,i

T
(6.50)

=⇒ ui =

√√√√√ T∑
t=1

v2t,i

T
. (6.51)

In words, the MLE of the model given amplitude observations at different dates is
the square root of the average of the squares of the observations. It is equivalent to
converting the data to intensity before doing the average. Note that when T = 1, the
MLE is equivalent to Equation 6.42. We can then express the optimal value for r in
each hypothesis:

• for H1a:

r̂(bi) =

√√√√√ T∑
t=1

v2t,i

T
− bi , (6.52)

• for an appearing scatterer at date tapp (Happ
1b ):

r̂(bi) =

√√√√√√
T∑

t=tapp

v2t,i

T − tapp + 1
− bi , (6.53)

• for a disappearing scatterer at date tdisp (Hdisp
1b ):

r̂(bi) =

√√√√√√
tdisp−1∑
t=1

v2t,i

tdisp − 1
− bi , (6.54)

It is then possible to apply the hypothesis tests defined in Equation 6.18, Equation 6.19
and in Equation 6.23.

Computational and memory complexity The graph construction requires a
large amount of memory that limits its application to small regions of interest and/or
short time series. The number of vertices is proportional to the number of images in
the time series (in the case of TV1R), the number of pixels of each image, and the
number of quantization levels. The number of edges is proportional to the number of
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nodes (about 8 times the number of nodes). We used the graph-cuts implementation
described in (Boykov and Kolmogorov, 2004). In this graph implementation, each
vertex requires 48 bytes of storage, and each edge requires 32 bytes. Hence, the memory
footprint of the graph representation limits the size of the series of images that can be
processed. For example, a series of 20 images of size 300 × 400 with a quantization
into 50 levels requires 33.7GiB (or 36.2GB) of RAM for the graph construction when
using TVR. However, when ψ = TV∞3D (which is the case in TV1BG and TV1C), the
problem only involves one background. Solving the same problem with this regular-
ization only requires 1.35GiB, simplifying the exact optimization of the proposed model.

Regarding the computational cost, the worst-case complexity of the minimum cut
is O(EV 2|C|) where |C| is the value of the minimum cut, E is the number of edges
and V the number of vertices. In practice, the experimental complexity scales almost
linearly with the number of nodes (Boykov and Kolmogorov, 2004). On a computer
with an Intel® Xeon(R) CPU E5-1620 with 16Gb of RAM, the algorithm takes
52,04s to compute a decomposition on 2 images of 300 × 400 pixels with 50 levels of
quantization. Note that we do not fully benefit from the power of the processor as the
used algorithm is single-core. Algorithms computing the grid-cut in parallel have also
been proposed (see (Liu and Sun, 2010)) and more compact memory representations
that exploit the regularity of the graph have been introduced in (Jamriska et al., 2012).

To reduce the computational and memory complexity, a subset of all quantization
levels can be considered at a time to get an approximate solution, see (Denis et al., 2009;
Shabou et al., 2011). We describe in subsection 6.3.2 another approach based on block
processing to further reduce memory requirements.

6.3.2 Efficient optimization

To apply the method to large images and/or long time series, it is necessary to develop
a method for limited-memory graph-cuts optimization.

Memory usage of the graph-cut method is proportional to the number of pixels in
the series. The required memory can thus be reduced by computing the optimization
locally, on spatio-temporal blocks extracted from the time series. Even though the
models involve only second order cliques, limiting the direct interactions to the immedi-
ate neighborhood, the maximum a posteriori estimate involves long-range correlations,
i.e., during the optimization, regularization effects are propagated over long distances.
Simple division of the image into smaller blocks thus results into visible block artifacts,
as can be observed in figure 6.4a. These block artifacts are due to the lack of con-
text: a constant area in the global optimum that gets divided into two regions during
the block-processing is represented by two different (constant) values with an artificial
discontinuity between the blocks.

To introduce context in the window F of interest, it is necessary to perform the
optimization on a bigger window C containing all the objects partially presents in F .
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(a) Solution obtained by local optimization
(computation window of size 502 leading to a
block effect)

(b) Exact solution obtained using the presented
algorithm for a computation window of size 1502

Figure 6.4 – Crops of the background component of the first image of the Saint-Gervais
set obtained with the presented method (filling window of size 502).

The proposed method works as follows:

1. To process a given window F (named filling window in the following), extract a
larger computation window C such that F ⊂ C.

2. Perform the optimization using the graph-cuts method described in subsec-
tion 6.3.1 on the spatio-temporal window C.

3. Keep the results of the decomposition only in the (smaller) filling window F .

4. Slide the filling window F and repeat from step 1 until the whole image has been
covered by the filling window.

This process is illustrated in Figure 6.5. We show in Figure 6.6 the root mean squared
error obtained by the block-processing approach for different sizes of the computation
window (the size of the block F is kept constant and equal to 50 × 50 pixels for this
single-date image). The required memory grows quadratically with the spatial window
size. Note that as we increase the size of the computation window, the algorithm is
slower. This is explained by the fact that the number of cuts stays the same for any
size of the computation window (as we do not change the size of F ) while the size of
the graph increases (which also increases the complexity of finding the minimal cut, see
subsection 6.3.1). As a comparison, running the optimal algorithm on the same data-
set takes 505s. It can be observed that on this image, the exact solution is obtained
for computation windows C larger or equal to 150 × 150 pixels (which requires only
8.6% of the amount of needed memory to process the whole image at once). When the
computation window F is strictly smaller than the image size, the solution computed on
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Figure 6.5 – Illustration of the proposed method for a memory efficient optimization of
the decomposition models. A sliding window is used to compute the output on part
of the image. The computations are done in a larger window (the compute region)
in order to include context and avoid the block effect. Animation available at www.
sylvainlobry.com/phd.

the block F is not guaranteed to match the solution obtained from the whole image, i.e.,
it is only approximate. Therefore, this algorithm makes it possible to select a trade-off
between memory/time complexity and quality of the result.

Summary: Optimization of decomposition models

Thanks to the choice of the TV prior for the background, we can use an exact
optimization method based on graph-cuts for our model provided that a quan-
tization of the possible values for the background component is performed. To
construct the graph, the priors on the strong scatterers are integrated in the
function representing the clique of order one. In practice, at each pixel and for
each possible value for the background, the optimal value for the strong scatterer
components are computed.

6.4 Parameters computation

One of the drawbacks of the proposed methods is that they require the user to tune a
number of parameters. Each method requires to provide:

• The number of looks (number) L: we have shown the equations for the simple
case of the Rayleigh distribution (where the number of looks is set to 1), however

www.sylvainlobry.com/phd
www.sylvainlobry.com/phd
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Figure 6.6 – Trade-off between computation time, memory use (top two graphs) and
accuracy (bottom graph): evolution as a function of the size of the spatial computation
window C, for the first image of the Saint-Gervais data-set.
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it is easily extended to the Rayleigh-Nakagami distribution. In this case, it is
another parameter in the likelihood. This number of look is usually known for
each image. When it is not known, the Equivalent Number Of Looks (ENL) can
be easily estimated by computing the coefficient of variation in an homogeneous
region (Jean-Marie Nicolas, 2012).

• The quantization levels (array of numbers): this parameter is required in order to
apply the exact optimization scheme presented in section 6.3. However it is hard
to tune it manually. We present a method to tune it based on two meaningful
parameters.

• The weight of the prior on the background component (number) βBG: this pa-
rameter is heavily application dependent. Depending on the targeted application,
it will change. However, we provide in this section a formula to obtain a first
approximation of its value.

• The weight of the prior on the strong scatterers component (number) βS: this
parameter depends on one’s definition of a strong scatterer. It can, however,
be easily set as a function of the contrast between a strong scatterer and the
background.

In addition, when using the change detection model TV1C, we have to set the weight put
on the number of detected changes. Once again, this is heavily application dependent.

The quantization levels: while the quantization levels are hard to tune manually,
they have a direct influence on the complexity (both computational and in memory, see
section 6.3) and on the quality of the result. Instead of requiring an array of numbers,
we propose to tune this parameter based on:

• the number of desired levels (nquantif);

• the desired coverage of the histogram of the image for the background component
(p).

Concerning the number of desired levels, it will usually be tuned based on the available
memory (i.e. the larger number the better). A notable exception is when the targeted
application is a classification based on the radiometries, where the quantization levels
would be easily tuned in order to match the radiometries of the different classes. The
second parameter is the portion p (between 0 and 1) of the histogram that is to be
represented by the background (a typical value is p = 0.95). This can be manually set
by looking at the histogram of the image. The quantization levels are then obtained
using the quantiles on the p parts of the total histogram of the image.

The weight of the prior on the strong scatterers component (βS): from Equa-
tion 6.45 it is easy to derive a desired contrast c =

vt,i
bt,i

to the weight that have to be
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put on the prior of the strong scatterers component:

βS = c2 − 2 log(c)− 1 (6.55)

The weight of the prior on the background (βBG): this prior highly depends
on the application. In some desired cases, a noisy background (obtained with a low
βBG is sufficient, whereas for images interpretation purposes, it can be useful to have
a highly regularized background. However it also depends on other variables such as
the number of looks and the quantization. Following the idea presented for the tunning
of β in subsection 4.4.4, an average level of regularization can be obtained using the
following formula for model TVR:

βBG =
L

δquantif
, (6.56)

where δquantif is the average distance between two levels of quantization. In the case of
models TV1BG and TV1C, the number of images represented by the background must
be taken into account:

βBG =
L · T
δquantif

. (6.57)

The weight for the prior on the number of changes (βC): This weight can
hardly be set automatically. TV1C suffers from the fact that the distribution of L1b is
not constant through the dates: for instance, it is more likely to detect an appearing
strong scatterer at the beginning of the series than it is at the end. Along the fact that
it is a problem for the detection of changes, it is also a problem for a meaningful setting
of βC. The variation of the empirical distributions of Lapp

1b (defined in Equation 6.14) is
shown in Figure 6.7. Compensating the variations of the distribution under the change
cases is a problem that needs to be addressed in the future.

6.5 Conclusion

We have presented three different models using decompositions into background and
scatterer components in order to process multi-temporal series of SAR images. The
models use different priors on the components, allowing to target different applications
such as regularization, strong scatterer detection and change detection that will be
covered in chapter chapter 7. The proposed formulation has several advantages:

• it makes it possible to put meaningful priors on each components;

• it can be optimized exactly up to a chosen discretization;

• there is no other requirement on the prior for the strong scatterers component
other than it has to be separable. Then, many different applications can be
considered.
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Figure 6.7 – Empirical distribution of Lapp
1b under H0 (no strong scatterer). The ra-

diometry of the background is set to µ = 20, the number of looks is L = 1 and there
are T = 15 dates in the series.

Given the fact that new models could be developed based on different priors for the
strong scatterers, future work includes enhancements based on the strong scatterers
priors for the proposed models. For instance, while we only allow one change for the
TV1C model, a more realistic model would allow cyclic changes. It has been discarded
for now because of the computational complexity it would raise, but it could be formu-
lated in the proposed framework. Another improvement would be to enforce a Constant
False Alarm Rate (CFAR) of the change detection in TV1C. As seen in Figure 6.7, the
number of detected changes is not constant through the time.

Future work could also be dedicated to the optimization of the models, using the
variational method from (Pock et al., 2008) which would allow to have a continuous
(as opposed to the discretization currently needed) optimization.

From the methods presented in this chapter, we can list contributions that could be
transfered in the context of the water/land classification (see Part II):

• The temporal links defined with TVα3D could be used with the Ising model that
was used for the classification part of chapter 4 when multi-temporal series will
be available.

• The efficient optimization scheme presented in subsection 6.3.2 to reduce the mem-
ory usage can be used on any MRF defined on the pixel level, and therefore could
be used for the classification and estimation MRF defined in chapter 4.
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Chapter 7

Applications

This chapter is dedicated to applications of the three models presented in chapter 6.
The targeted applications are the following:

• Strong scatterer detection (section 7.1): the detection of strong scatterers, either
as features for the detection/classification of man-made structure or simply to
take them into account in further processing steps. It is a generally done when
working on SAR images of urban area. Classically used methods such as (Lopes
et al., 1993) estimate the background radiometry on a window and then compute
a GLRT. The results show the benefits of the joint detection and estimation
compared to such models. Also, this section compares the results using the L0
pseudo-norm against using an L1 norm, as it usually done for convex relaxation.

• Image regularization (section 7.2): regularizing SAR images can be helpful in
interpretation tasks. We compare the results from the TVR and TV1BG models
to two widely used models used for regularization: a simple TV regularization
and a temporal multi-looking. This comparison outlines the difference in the
results between these models, and shows how the proposed models can be useful
for regularization.

• Change detection (section 7.3): as we have seen in section 6.1, change detection
is one of the primary application of SAR images. In section 7.3, we compare our
method to widely-used models in this particular task. We show that our method
gives interesting results, especially when we do not want spatial regularization on
the changes.

7.1 Strong scatterers detection

In this section, we compare the scatterers detection of the TVR/TV1BG model to
the method proposed by (Lopes et al., 1993). This method computes the ratio of
the radiometry of a given pixel and a cross centered on the pixel. This ratio is then
thresholded to decide if the pixel is a strong scatterer. Also, we address the benefits
of using the L0 pseudo-norm versus a convex relaxation with the L1 norm when doing
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strong scatterers detection. The comparison is presented based on results computed on
a synthetic image. In subsection 6.2.1, we defined a strong scatterer as a point which
radiometry is an order of magnitude higher than its surrounding. However, it still not
clear what can be considered "an order of magnitude higher" given the complexity of
the background that surrounds a target. In this respect, a ground truth would be
necessarily biased toward a method.

The combinatorial optimization method described in section 6.3 is applicable to the
L0 pseudo-norm and to the L1 norm, and provides in both cases the global optimum.
It is thus possible to compare the performance of the two formulations: the L0 penalty
derived from the GLRT and the L1 norm widely used to obtain a convex relaxation of
the minimization problem, see for example (Tropp and others, 2006).

We either consider the model TVR/TV1BG (in our experiments, only one back-
ground is considered, making both models exactly the same), or a modified version of
this model where the L0 pseudo-norm is replaced by the L1 norm. When considering
the modified minimization problem involving the L1 norm, the optimal st,i is no longer
given by a simple expression as in Equation 6.46. Optimal values st,i are either zero,
or if strictly positive, they must cancel the first partial derivative of the sum of the
log-likelihood and the L1 norm, given below:

∂

∂st,i

[
2 log(st,i + bt,i) +

v2t,i
(st,i + bt,i)2

+ βSst,i

]
=

−
2 v2t,i

(st,i + bt,i)3
+

2

st,i + bt,i
+ βS . (7.1)

The only positive and real-valued root, as obtained by finding the roots of a third degree
polynomial using a computer algebra system, is:

ŝt,i(bt,i) = t1/3 +
4

9β2S t
1/3
− 3βS bt,i + 2

3βS
, (7.2)

with:

t =
vt,i
√

27β2Sv
2
t,i − 16

33/2β2S
+

27β2Sv
2
t,i − 8

27β3S
. (7.3)

We consider a numerical experiment to compare the detection performance of L0
and L1 formulations, for various contrasts between point-like scatterers and a piece-
wise constant background, see Figure 7.1c. The contrast between each scatterer and
the background is given in Figure 7.1d. 100 noisy versions are then generated using
a Rayleigh multiplicative model. The L0 and L1 models are applied to each of these
images with a fixed value of βBG (set to 0.05) and various βS values to obtain the
receiver operating characteristic (ROC) curves drawn on Figure 7.2. They are compared
with the ROC curve obtained using the method based on a local estimation of the
background proposed in (Lopes et al., 1993). The L0 model outperforms both the L1
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(a) Input noise-free background component (b) Input noise-free scatterers component

(c) Input noise-free image ( 7.1a + 7.1b) (d) Contrast ( 7.1b / 7.1a)

Figure 7.1 – Input image used to compare L0 and L1 models in the scatterer detection
application. 100 noise realizations of 7.1c are generated and scores obtained in scatterers
detection using both the L0 and L1 models are presented in Figure 7.4.
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Figure 7.2 – Receiver operating curve (ROC) between L0 and L1 version of our model
and a method based on local window analysis (Lopes et al., 1993).

model and the detection based on local background estimation. We show in Figure 7.3
the scatterers detected by each model, for an identical proportion of correct detections.
The L0 model gives a uniform performance (correct detections and false detections
are well distributed in the image), while the L1 model fails to detect scatterers in
the regions with higher background radiometry and gives more false detections in low-
radiometry areas. This phenomenon is confirmed by representing the evolution of the
Probability of False Alarm (PFA) and the Probability of Detection (PD) as a function
of the background radiometry, Figure 7.2. The L0 term produces constant PFA and PD
(note that, in the numerical simulation, when the background radiometry changes, the
scatterer radiometry is adapted so as to keep a unitary ratio: st,i/bt,i = 1). In contrast,
the PFA and PD of the L1 model decrease when the background radiometry increases,
which is consistent with the non-uniformity of detected scatterers observed in 7.3b.
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(a) Scatterers image obtained using the pro-
posed decomposition (with L0 term) , βS = 2.5

(b) Scatterers image obtained using L1 criterion,
βS = 0.012

Figure 7.3 – 2 images of scatterers achieving the same probability of detection: left with
an L0 penalty, right with an L1 penalty.

Figure 7.4 – With an L1 penalty, the probability of false alarm PFA and the probability
of detection PD vary with the background radiometry.
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Summary: Strong scatterers detection

The three proposed models allow for a strong scatterer detection based on the
pseudo-norm L0. We compared the performances of one of our model (TV1BG)
on a synthetic set of images to (Lopes et al., 1993) and a L1 version of our model.
Compared to (Lopes et al., 1993), our model benefits from a better estimation of
the background. The results presented also indicate that a convex relaxation to
the L1 norm has strong incidences on the performances.

7.2 Image regularization

For image regularization, both models TVR and TV1BG can be used efficiently. We
show the results on a dataset acquired by TerraSAR-X in spotlight mode (resolution of
1m×1m). The multi-temporal stack is made of 56 images with dimensions of 700×700

pixels. Acquisition dates ranges from 11/22/2007 to 03/13/2012. The first and the last
image of the multi-temporal stack are shown in Figure 7.5. In these images, we can
expect a lot of variations at different scales:

• A lot of traffic can be present at the border of the river "La Seine".

• In the river, we can have variations due to the presence of boats. Also there are
two train lines in the image (from the top of the image to the right, and from the
right to the bottom).

• Two areas are in construction. On the upper-left part of the image, the "Maison
de la Radio" was being renovated (from early 2009 until today), while a mall was
first demolished then built on the bottom-right part of the image (from 2007 to
10/23/2013).

As using the exact optimization method described in subsection 6.3.1 for the TVR
model (124 GiB/133 GB of memory are required) is hardly possible, we use for all
computations of this section the suboptimal method presented in subsection 6.3.2. The
parameters are as follow and are set using the methods described in section 6.4:

• nquantif = 20

• p = 0.95

• c = 3 (which leads to βS = 5.8).

• F (side of the filling window for the efficient optimization) = 100

• C (side of the computing window for the efficient optimization) = 150

The weight on the prior on the background βBG is set automatically (using Equation 6.56
and Equation 6.57).
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(a) First image of the stack (b) Last (56th) image of the stack

(c) View from the middle of the "pont de Grenelle" (08/24/2017)

Figure 7.5 – First and last image of the Paris data. Acquired by TerraSAR-X in spotlight
mode. Animation showing the data at each date is available at www.sylvainlobry.com.
The 360◦ photography taken from the middle of the SAR images shows the "Maison de
la Radio" on the left (which is on the top-left corner of the SAR images) and the mall
in the middle (bottom-right of the SAR images).

www.sylvainlobry.com
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...

Figure 7.6 – Result of the temporal multi-looking applied on the full stack.

In this section, we compare the results obtained by TVR and TV1B to classical reg-
ularization methods: classical TV or temporal multi-looking. We recall that temporal
multi-looking apply the MLE at each site taking all the pixels for the different dates.
In amplitude, it gives:

ui =

√√√√ 1

T

T∑
t=1

v2i (7.4)

From section 6.1, we know that these methods are not fully adapted to an application
on multi-temporal series of SAR images: the assumption of a low TV is broken by the
presence of numerous strong scatterers, while the assumption that there is no change
between the different acquisitions that is made by the temporal multi-looking does not
hold in highly populated urban area.

We show the results from the temporal multi-looking in Figure 7.6 and the results
obtained using the classical TV model in Figure 7.7. The results obtained by our method
are presented in Figure 7.8 for model TVR and in Figure 7.9 for model TV1BG. Finally,
all the results are presented in Figure 7.10 for an easier comparison.

We can observe in the result of the temporal multi-looking (Figure 7.6) that the
image has almost no speckle remaining. However, in changing areas, we have many
strong scatterers. Basically, when a strong scatterer is present at a site for at least
one date, it will be present in the temporal multi-looking. This results in many strong
scatterers for areas under construction, and a "shadow" effect on the river, where boats
have been present at one date.

On the opposite, when looking at the results from the TV method, we can realize
that no strong scatterer is present. This is easily explained: as they break the assump-
tion of large homogeneous area, the model is not able to represent them. However,
their presence affects the value of the homogeneous area. It is worth noticing that when
lowering the regularization parameter, it is possible to recover the strong scatterers
at the price of a poor localization. If we want to recover the right localization, the
regularization parameter should be very close to 0, leading to very little regularization.
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Figure 7.7 – Result of the classical TV regularization on the first image of the stack,
with the automatically obtained regularization parameter (on top), or a lower (factor
10) regularization parameter (bottom)
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The results obtained by the first of the proposed model (TVR) are presented in Fig-
ure 7.8. We can see the effect of the two regularization terms: the background contains
a few but large homogeneous area while the strong scatterer component is sparse. It is
worth noticing that there is only few changes between the two pictured backgrounds,
which is coherent with the assumption that the majority of changes are from the strong
scatterer component. This assumption is exploited by the model TV1BG (see Fig-
ure 7.9). While the results are visually nearly as good, close examination reveals some
incoherency, for instance in the bottom-right corner of the image for the first image of
the series.

Summary: Image regularization

We presented results obtained using the proposed TVR and TV1BG models and
compared them to two widely used regularization methods: TV and a simple
temporal multi-looking. As expected the proposed models perform better than
these methods when strong scatterers are present (which breaks the hypothesis
made by TV) and potentially moving (which breaks the assumption made by the
temporal multi-looking).
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Figure 7.8 – Result of the TVR model on the full stack. An animation showing all the
results is available at www.sylvainlobry.com/phd.

www.sylvainlobry.com/phd
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Image 1 Image 56

Figure 7.9 – Result of the TV1BG model on the full stack. An animation showing all
the results is available at www.sylvainlobry.com/phd.

www.sylvainlobry.com/phd
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Image 1 Image 56

In
pu

ts
(v
)

M
ul
ti
-lo

ok
in
g

T
ot
al

va
ri
at
io
n

T
V
R

T
V
1B

G

Figure 7.10 – Comparison of the different results.
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7.3 Change detection

While all three models can be used for change detection, TV1C is particularly well
suited for this purpose. We have seen in subsection 6.2.1 that it accounts for the
changes directly in the model via a L0 regularization enforced on the number of changes.

Qualitative evaluation: First we present results on the dataset shown in Figure 7.5.
They have been computed with the following parameters for the tunning rules described
in section 6.4:

• nquantif = 10

• p = 0.95

• c = 3.

• βC = 3.

• F (side of the filling window for the efficient optimization) = 350

• C (side of the computing window for the efficient optimization) = 400

The results are presented in Figure 7.11. We can note that even though the model
does not enforce any spatial regularity in the changes, changes are quite grouped. This
indicates that it is not necessary to add such a regularization.

In Figure 7.12, Figure 7.13 and Figure 7.14, we look at specific area:

• "Maison de la Radio" (Figure 7.12): as explained in the dataset description (see
section 7.2), it was being renovated during the acquisitions. We can see that we
detect the construction of the central tower.

• "Beaugrenelle" (Figure 7.13): this area contains a mall that was first destroyed,
then re-built. A few changes are detected for the destruction part but not for the
construction. This is interesting, as it outlines the main weakness of our proposed
method: it considers at most one change per pixel during the time series. In the
case of destruction followed by a construction, it is not well adapted.

• "Boat" (Figure 7.14): In this crop, a boat is present during the last acquisition of
the time series. In this case, it should probably not be considered as a change and
be represented as "no strong scatterers" (H0) pixels. However, as we have seen
in section 6.4, the proposed model is not CFAR, meaning that a strong scatterer
that is only present at the last date is more likely to be detected as a change than
a strong scatter only present at the first date.

We also present the results of the change detection on the following datasets:
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...

...

legend: No strong scatterer (H0) Constant strong scatterer (H1a)

Disappearing strong scatterer (Hdisp
1b ) Appearing strong scatterer (Happ

1b )

Figure 7.11 – Results of the TV1C model on the Paris dataset.
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(a) Image 1 (b) Change map (c) Image 56

legend: No strong scatterer (H0) Constant strong scatterer (H1a)

Disappearing strong scatterer (Hdisp
1b ) Appearing strong scatterer (Happ

1b )

Figure 7.12 – Changes in the "Maison de la Radio". We can see that in this case, the
newly constructed tower at the middle of the building was well detected.

(a) Image 1 (b) Change map (c) Image 56

legend: No strong scatterer (H0) Constant strong scatterer (H1a)

Disappearing strong scatterer (Hdisp
1b ) Appearing strong scatterer (Happ

1b )

Figure 7.13 – Changes in the Beaugrenelle area (bottom-right part of the images). This
area was in construction during the acquisitions. Only a few changes are detected, and
no appearing strong scatterers. This area is typically not well supported by our model
as it features two changes (in this case a disappearance and an appearance).

(a) Image 1 (b) Change map (c) Image 56

legend: No strong scatterer (H0) Constant strong scatterer (H1a)

Disappearing strong scatterer (Hdisp
1b ) Appearing strong scatterer (Happ

1b )

Figure 7.14 – Crop on "La Seine". Here, boats are sometimes sailing and this is the
case in the last image of the time series. While this should probably not be detected as
an appearance, it is the case using our model. This is due to the fact that our model is
not CFAR as explained in section 6.4.
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• A series of 17 images of size 2048× 2048 from Paris acquired by TerraSAR-X (in
spotlight HR mode, resolution: 1m × 1m) between 01/24/2009 and 04/09/2010
in Figure 7.15;

• A series of 13 images of size 512 × 512 from Saint-Gervais, France acquired by
TerraSAR-X (in stripmap mode, 2m× 2m) between 05/31/2009 and 09/25/2011
in Figure 7.16;

• A series of 25 images of size 512×512 from Saclay, France acquired by Sentinel-1A
(in Interferometric Wide Swath, 5m× 20m) between 03/06/2015 and 02/29/2016
in Figure 7.17.

All the results are computed using a fixed set of parameters:

• βBG = 0.1

• βS = 3× T (where T is the number of images).

• βC = 5.

We can see that using a fixed set of parameters on datasets with different resolutions
gives similar results. It shows that it will be feasible to apply this model on different
datasets with minimal user intervention.

Comparison with state of the art: We now compare our algorithm to other change
detection algorithms for amplitude SAR images.
In (Lobry et al., 2016), we also presented a change detection application using models
TVR and TV1BG. The same hypothesis was made as a starting point: changes in urban
areas are mostly reflected by changes in the strong scatterers. To perform the change
detection between two dates, the two strong scatterers components were:

• first binarized, to achieve robustness with respect to radiometric fluctuations;

• compared on a spatial neighboring, to achieve robustness with respect to small
changes in the vicinity of a detected strong scatterer:

ci = |
∑
δi

sbin
δi,t1
−
∑
δi

sbin
δi,t2
| , (7.5)

were sbin is the binarization of s, and δi a set of pixels in the neighborhood of i. c can
then be thresholded in order to retrieve the changes.

We compare the results on the Saint-Gervais dataset of the TV1C method and the
method using TV1BG with the followings:

• the GLRT from (Lombardo and Oliver, 2001);

• an approach based on Wilcoxon tests from (Krylov et al., 2012);
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(a) First image (b) 17th image

(c) Change map

legend: No strong scatterer (H0) Constant strong scatterer (H1a)

Disappearing strong scatterer (Hdisp
1b ) Appearing strong scatterer (Happ

1b )

Figure 7.15 – Results on the second Paris dataset, acquired by TerraSAR-X in spotlight
mode.
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(a) First image (b) 13th image

(c) Change map

legend: No strong scatterer (H0) Constant strong scatterer (H1a)

Disappearing strong scatterer (Hdisp
1b ) Appearing strong scatterer (Happ

1b )

Figure 7.16 – Results on the Saint-Gervais dataset, acquired by TerraSAR-X in
stripmap mode.
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(a) First image (b) 25th image

(c) Change map

legend: No strong scatterer (H0) Constant strong scatterer (H1a)

Disappearing strong scatterer (Hdisp
1b ) Appearing strong scatterer (Happ

1b )

Figure 7.17 – Results on the Saclay dataset, acquired by Sentinel-1A in Interferometric
Wide Swath mode.
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Figure 7.18 – ROC curve comparing the results of Change detection on the Saint-Gervais
dataset.

• NORCAMA from (Su et al., 2014a) which applies a likelihood ratio test on images
denoised with a non-local algorithm (Su et al., 2014b).

The results, computed using a ground truth made manually by (Su et al., 2014a), are
presented as a Receiver Operating Characteristic (ROC) curve (comparing TPR to
FPR) in Figure 7.18. The reason the proposed models can not achieve 100% TPR is
because it makes the assumption that all changes occurs in the strong scatterers, which is
not always verified in practice. We can see that our model obtains poorer performances
compared with (Su et al., 2014a). On the opposite, it also provides the background
and the strong scatterers components that can be useful for the interpretation of the
changes. We propose to visually compare the results of TV1C and (Su et al., 2014a) on
the second Paris dataset. Since (Su et al., 2014a) uses a first step of denoising, results
show more spatial regularity. On the other hand, using our method, only changes in
strong scatterers are detected. This is more visible when we zoom in as in Figure 7.20
where the spatial regularity results in false detections. Therefore the choice of one model
versus another has to be made with respect to the desired application.
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(a) First image (b) 17th image

(c) Results using TV1C (d) Results using NORCAMA

Figure 7.19 – Comparison of the results using our method and (Su et al., 2014a).
Changes are in green.
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(a) First image (b) 17th image

(c) Results using TV1C (d) Results using NORCAMA

Figure 7.20 – Comparison of the results using our method and (Su et al., 2014a).
Changes are in green.

Summary: Change detection

We have presented results using the TV1C model and a change detection tech-
nique as a post-processing step to TV1BG. These results are compared to state-
of-the art methods. TV1C model can be efficiently applied to find well located
changes in urban areas. However, it has several drawbacks:

• it make the (strong) hypothesis that changes occur only in the strong scat-
terer component;

• it can only detect at most one change per pixel in the whole time series;

• the probability of detecting a change is not the same depending on the date.

While these drawbacks must be kept in mind when using the model, we saw that
it performs well compared to other classically used methods. Note that we could
allow for more changes at each pixel at the price of an higher computational cost,
and the third point could be solved by adding a time-depending factor to the
βC parameter (which is work in progress). It offers an alternative to widely used
methods in terms of results (as it will also provide a background regularization
and a strong scatterer detection).



136 CHAPTER 7. APPLICATIONS

7.4 Conclusion

We have presented results of application in strong scatterers detection, regularization
and change detection of the models developed in chapter 6. From the results, we can see
that the proposed method performs generally well on these applications. We showed that
it is more interesting to use the L0 pseudo-norm than the L1 for the strong scatterers
detection, and that a convex relaxation comes at a cost in performances. We showed
that our models can be a good alternative for amplitude images regularization. Finally,
the change detection results showed that our method has good results on images from
different sensors and of different resolutions. However, the hypothesis made that there
is at most one change per pixel and the fact that the probability of detecting a change
in not the same depending on the date leads to some bad detections in the results.

It would be theoretically possible to allow for more than one change by modifying
the hierarchical hypothesis tests to include hypothesis for more than one change but
this would lead to an exponential increase in the complexity.
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Conclusion

The main objective of this thesis is to provide reliable methods for the land/water clas-
sification of SWOT images. This task is a critical step towards the reliable estimation
of water elevation. We have divided the main objects of interest for hydrologists in two
categories defined on their general shape:

• Large and compact objects: widely-used binary classification methods fail to take
into account the intra-class variation present in SWOT (described in section 2.4).
The contributions presented in this thesis are a straightforward application of a
general framework (MRF for an Ising model) to variable class parameters and
their estimation. We presented two novel methods for the estimation of the pa-
rameters that can be embedded in an iterative process (alternating classification
and estimation). The first method constructs a partition of the image with re-
gions where parameters can be considered constant. The second method relies on
another MRF for the estimation of the parameters. We have shown that these
methods are not only relevant for SWOT images with strong variations, but can
also be applied to very different sensors (we have used the example of an image
acquired by SETHI, a P-band airborne sensor) which presents similar features.

• Narrow curvilinear networks: mainly representing rivers, they do not respect the
hypothesis of the isotropic spatial compactness made by most classification algo-
rithm. To this effect, we adapted previous works developed for road detection
and vessels detection in fundus of eyes images. This method is a combination
of two steps: the first step detects segments at the pixel level and the second
step connects the detected segments and selects the meaningful connections with
respect to their global contribution to geometrical properties of river networks.
This method only improves by a fraction the water detection performances but is
of prime importance for the study of these objects using SWOT data.

Part of the PhD was also dedicated to the operational implementation of the developed
methods in the CNES processing chain. To this date, we implemented the MRF taking
into account the variational class parameters and the Markovian estimation for the
large and compact objects detection. The method dedicated to the detection of narrow
curvilinear networks is in the process of being implemented.
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Considering the revisiting time of satellites (approximately 21 days in the case of
SWOT), multitemporal processing of the data can represent a strong improvement
in terms of classification results. As this thesis is an upstream work (the satellite
will be launched in April 2021), meaningful multitemporal data was not available for
SWOT. This prevents efficient evaluation of the methods in this context. Therefore,
we worked on the adaptation of the algorithms proposed for the large and compact
objects detection to various problems in a different context: multitemporal SAR images
of urban areas. We presented models taking into account the strong scatterers that
appear in such images and that usually break the assumptions made by regularization
algorithms. The general idea is to describe the image as a sum of two components:
a component representing the backgrounds and another one representing the strong
scatterers. Spatial regularity can then be enforced on the backgrounds, while the strong
scatterers component is controlled by its sparsity.

• TVR: this model is adapted to the regularization of time series. It outputs one
background and one strong scatterers component for each input image.

• TV1BG: this model only outputs one background representing the whole multi-
temporal stack, along with one strong scatterers component for each input image.
It is well adapted for strong scatterers detection.

• TV1C: as for TV1BG, it outputs one background and as many strong scatterers
components as the number of input images. In addition, it features a sparsity
constraint on the number of changes that can occur in the strong scatterers com-
ponent stack, making it adapted for change detection.

The proposed models can be optimized exactly and could be easily adapted to new
applications. One drawbacks of the proposed optimization method, based on graphcuts,
is the memory needed which can prevent its application on large time series. To this
effect, we proposed a non optimal adaptation of MRF models which makes possible to
set a trade-off between needed memory, the computation time and the quality of the
result. This contribution will be useful for the processing of large time series of SWOT
data.

Perspectives

When realistic data will be available, it will be of prime importance to study the adap-
tation of the proposed methods for the multi-temporal processing of urban SAR data
to the case of water detection in SWOT images. The adaptation of the TV3D defined
in the third part to an Ising model is straightforward. Adapting the methods for the
estimation of the parameters has to be approached differently for the two proposed
methods:

• considering the region-based approach, the partition found on a first image could
be used when new images of the same area are available. However, this will
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not be robust to changes, which is of interest for SWOT. A solution could be to
restart the partitioning process on a new image using a coarse partition (i.e. a
few iterations before convergence) from a first image as an initialization.

• Considering the Markovian approach, the prior could be modified to add a tem-
poral link (i.e. adding an L2 distance between pixels at the same site and at
consecutive dates). However, this would not be adapted to abrupt changes (e.g.
floods). Another solution would be to use a previous parameter map as an ini-
tialization (instead of the Xfactor for instance).

Another task which will have to be tested is the impact of a difference between the
real σ0 of each class and those assumed for the computation of the initialization using
the Xfactor. The difference could be problematic for the simple methods that do not
re-estimate the parameters.

The work achieved on the processing of multi-temporal could be extended in many
ways. The model adapted to change detection (TV1C) as presented has two main
drawbacks: it is not able to take into account more than one change at each pixel
and the probability of detecting a change is not constant through time. The fact that
only one change can be considered at each pixel can be problematic when processing
large time series. An extension to a fixed number of changes is straightforward, but
the complexity grows exponentially with the maximum number considered. Therefore,
other strategies should be explored. The fact that the probability of detection is not
constant comes from the variability induced by speckle. A strategy of normalization of
the probability should be applied.
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SNR Signal-to-noise ratio. 3, 17, 19, 20, 35, 48, 142

SWOT Surface Water & Ocean Topography. 1–5, 9, 17–20, 33, 35, 40, 41, 45, 46, 48,
59, 60, 137–139, 142

TPR True Positive Rate. 62–64, 133, 142

TV Total Variation. 4, 27, 29, 93, 94, 107, 113, 120–122, 142
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Modèles Markoviens pour les images SAR:
Application à la détection de l’eau dans les images satellitaires

SWOT et analyse multi-temporelle de zones urbaines

Sylvain Lobry

RÉSUMÉ : Afin d’obtenir une meilleure couverture, à la fois spatiale et temporelle de leurs mesures les hydrologues
utilisent des données spatiales en plus de celles acquises sur place. Fruit d’une collaboration entre les agences
spatiales française (le CNES) et américaine (JPL, NASA), la future mission SWOT a notamment pour but de fournir
des mesures de hauteur des surfaces d’eau continentales en utilisant l’interférométrie radar à synthèse d’ouverture
(SAR). Dans cette thèse, nous nous intéressons au problème de la détection de l’eau dans les images d’amplitude
SWOT qui est ici un prérequis au traitement interférométrique.
Dans cette optique, nous proposons d’utiliser une méthode dédiée à la détection des larges cours d’eau ainsi qu’un
traitement spécifique pour la détection de rivières fines. La première méthode est basée sur un champ de Markov
(MRF) pour la classification, conjointement à une estimation des paramètres de classes qui ne peuvent être supposés
constants dans le cas de SWOT. L’estimation des paramètres peut également être modélisée par des champs de
Markov. La seconde méthode s’appuie sur une détection de segments au niveau pixellique complétée par une
connexion de ces segments.
Afin d’étudier l’extension aux séries multi-temporelles, nous proposons des méthodes de traitement adaptées aux
données SAR de zones urbaines. Ces zones présentent de forts rétro-diffuseurs, ayant une radiométrie largement
supérieure à celle des autres points dans l’image. Les modèles présentés prennent explicitement en compte la
présence de ces forts rétro-diffuseurs en considérant les images comme une somme de deux composantes (le
fond et les cibles fortes). Différents termes de régularisation peuvent alors être utilisés pour chacune de ces deux
composantes. Modélisés comme des champs de Markov, ils peuvent alors être optimisés exactement par recherche
de coupure minimale dans un graphe. Nous présentons des applications en détection de cibles fortes, régularisation
et détection de changement dans ces séries.

MOTS-CLEFS: Traitement d’images, Télédétection, Imagerie satellitaire, Radar à synthèse d’ouverture (RSO), SWOT,
Classification binaire, Détection d’eau, Régularisation, Détection de changement, Multi-temporel.

ABSTRACT: To obtain a better coverage both spatially and temporally, hydrologists use spaceborne
data in addition to data acquired in situ. Resulting from a collaboration between NASA’s Jet Propul-
sion Laboratory (JPL) and the French Space Agency (CNES), the upcoming SWOT mission will provide
global continental water elevation measures using Synthetic Aperture Radar (SAR) interferometry. In
this dissertation, we address the problem of water detection in SWOT amplitude images, which is to be
performed before the interferometric processing.
To this end, we propose to use a method dedicated to the detection of large water bodies and a specific
algorithm for the detection of narrow rivers. The first method is based on Markov Random Fields (MRF).
The classification is regularized and the class parameters, which cannot be assumed constant in the
case of SWOT, are jointly estimated. The second method is based on segment detection at the pixel
level, completed by a connection step.
In order to study the extension to multi-temporal data, we propose methods adapted to the processing
of series of SAR images of urban areas. These areas feature strong scatterers, having a radiometry
orders of magnitude higher than the other points in the image. The proposed models explicitly account
for the presence of these strong scatterers by considering the images as a sum of two components (the
background and the strong scatterers). Different regularization terms can then be applied to each of
these components. Modeled as MRF, they can then be optimized exactly using graph cuts. We present
applications for strong scatterers detection, regularization and change detection.

KEY-WORDS: Image processing, Remote sensing, satellite imagery, Synthetic Aperture Radar (SAR),
SWOT, Binary classification, Water detection, Regularization, Change detection, Multitemporal process-
ing.
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