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Abstract—This paper addresses the problem of counting build-
ings in very high-resolution overhead true color imagery. We
study and discuss the relevance of deep-learning based methods to
this task. Two architectures and two loss functions are proposed
and compared. We show that a model enforcing equivariance
to rotations is beneficial for the task of counting in remotely
sensed images. We also highlight the importance of robustness
to outliers of the loss function when considering remote sensing
applications.

Index Terms—Deep learning, remote sensing, regression,
counting, equivariance, loss functions

I. INTRODUCTION

Thanks to their ability to learn multiscale, translation-
invariant features, deep learning methods have proven useful to
tackle remote sensing tasks such as single pixels segmentation,
image classification and anomaly detection [1]. Instead, here
we study the suitability of such methods for counting objects
in remotely sensed images. Counting can be useful for several
tasks, from urban planning to crowd estimation (by counting
the number of pedestrians or cars [2]) or vegetation [3] and
wildlife monitoring [4]. In remote sensing, efforts have been
dedicated to counting cars in very high-resolution images [5]–
[7] which can be used as an estimation of the crowdedness of
a specific place. This work is focused on the specific task of
counting buildings in remotely sensed images. This task has
been tackled by [8] based on the assumption that the number of
buildings is linearly correlated to the number of line segments
contained in the image.

While solving the same problem, counting methods can be
divided in three categories based on their formulation:

1) Object detection followed by counting: these methods
first detect the objects of interest either using classical
feature extraction methods (e.g. SIFT keypoints [5]) or
in recent works using convolutional neural networks
(CNNs) [9]. It allows to profit from the research dedi-
cated to object detection and have the advantage of giv-
ing a visual explanation of the results (via the localized
objects). However, they tend to fail when some objects
are partially occluded or merged.

2) Integration of an estimated density: another family of ap-
proaches estimates a density map from the images which
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Fig. 1: Counting as a regression task.

can then be integrated for the actual counting. Compared
to the object detection, which is a discrete counting,
these approaches allow to count partially occluded ob-
jects while retaining spatial information. Recent works
use CNN-based models to estimate the density map. In
[4], object/background separation is predicted along with
the density map and an uncertainty estimation. In [10],
a composition loss is used to penalize errors both at the
density map and counting levels.

3) Regression: a third approach is to treat the problem
as a regression task. In this setting, the model predicts
directly the number of objects of interest. These models
are trained with image/count pairs and must learn the
objects of interest by themselves [3].

Our proposed approach is of the last category and is
summarized in Figure 1: we compare a classical architecture
(Resnet-50) to the recently proposed RotEqNet [11], which by
encoding rotation equivariance is particularly suited to train
CNNs from scratch with smaller datasets. We also compare
two loss functions, making different assumptions about the
types of errors to be minimized. We applied the proposed
architectures to the task of counting buidings from the INRIA
dataset [12]

II. METHOD

As mentioned in the introduction, methods based on object
detection fail when objects are merged. This is frequently
the case when considering buildings. Therefore, we formulate
our problem as a regression task. More precisely, we want to
predict the number of buildings ŷ in a remotely-sensed image
patch x. We will solve this problem in a supervised manner:
we have a collection of N image patches x = {x1, . . . , xN},
for which we know the true number of buildings y. When
using a deep learning approach to solve such a problem, we
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Fig. 2: RotEqNet architecture considered in this study. The
image is first rotated (we consider 17 different orientations)
and convoluted to obtain a 6 channels vector field. After max-
pooling, the same operation is repeated to obtain a 16 channel
vector field. After the last layer (of depth 128), the vector fields
are vectorized and passed through a multi-layer perceptron
with 1 hidden layer of dimension 1024 to obtain the final
prediction.

need to define both the network architecture and an appropriate
loss function. In the following, we study both these elements.

A. Network architectures

Convolution operations are inherently equivariant to trans-
lations. In general this is a desirable property when dealing
with images of all kinds and we argue that this partly explains
the performances achieved by CNNs in computer vision.
However, the task of counting in a image is also invariant
to rotations, which is not enforced by CNN models by design.
To this effect, we compare a rotation equivariant network [11]
learned end-to-end with a more classical approach fine tuning
a ResNet-50 [13] pre-trained on ImageNet.

Finetuned ResNet50. It has been observed that, when adding
more layers to an already deep (and converging) model,
performances first stagnate and then decrease. This is the
so-called degradation problem. This should not happen, as
the extra layers should be able to learn an identity mapping
and therefore at least maintain the original performances. [13]
solves this issue by learning residual mappings instead of the
usual direct mapping. This can be interpreted as a collection
of many small paths instead of a single very deep network
[14], which in practice makes the network efficient. In this
work, we use the ResNet-50 architecture (50 layers residual
network) from [13].
A common approach to solve a specific task with a general-
purpose network is to fine-tune it: the first layers (which
achieve generic, lower level features extraction) are kept intact
while the last fully connected layer is replaced and trained to
solve the problem. Recent remote sensing applications of such
a procedure can be found in [15], [16].

RotEqNet. When dealing with remote sensing images, few
assumptions can be made about objects’ orientations. Intu-
itively, we would like our model to recognize buildings, which
would most likely include the detection of straight angles

(buildings are often rectangles). However, a non-invariant
general-purpose model needs to learn to detect these straight
angles in every direction, which adds complexity.

Marcos et al. [17] tackle this issue by applying the con-
volution operator to different orientations of the input image
and passing further only the highest scoring orientation (’ori-
entation pooling’) as a vector field. A convolution operator
working on this vector field is then defined and used as
a filter for latter stages in the architecture. Therefore the
model is equivariant to rotations and has been shown to
match performances of much larger models in remote sensing
semantic segmentation [11]. We use the architecture shown
in Figure 2. Note that since we are performing regression
of a single scalar, we do not seek equivariance, but rather
invariance (for a rotation of the image, we want the response to
remain unchanged). Nonetheless, in [17] authors demonstrate
that rotation equivariant CNNs are also suited to tackle rotation
invariant tasks.

B. Loss functions

When training a neural network, the choice of the loss
function is essential as it will define the error which will be
backpropagated and hence, how the network’s parameters will
be updated. A classical loss function for regression [3] is the
Mean Square Error (MSE) :

LMSE(y, ŷ) =
1

N

∑
i

(yi − ŷi)2 . (1)

Since it is unbiased, MSE will learn mostly from the worst
predictions. This can be a problem when only few examples
are particularly difficult, or when the ground truth is incorrect.
In our case, errors in the dataset can be attributed to the
following reasons:

1) the source of information (e.g. cadastre) is not updated
exactly as the image is acquired (see Figure 4a);

2) the delineation of the buildings is not clear (e.g some
buildings can be merged, see Figure 4b).

A more robust alternative to MSE is the pseudo-Huber loss,
which is a smoothed approximation of the Huber loss [18]:

LHuber(y, ŷ) =
1

N

∑
i

δ2

√1 +

(
yi − ŷi
δ

)2

− 1

 , (2)

where δ is a factor determining the slope when |yi− ŷi| � 0.
This function has a quadratic behavior when yi − ŷi ≈ 0 and
is linear for |yi− ŷi| � 0. This means that strong outliers will
not have a larger derivative than wrongly estimated samples.
Both losses are shown and compared in Figure 3.

III. RESULTS AND DISCUSSION

A. Dataset

For our experiments, we used the training dataset provided
by [12]. The aerial orthorectified RGB imagery dataset covers
405 km2 with a resolution of 30 cm and is spread across five



Fig. 3: Mean Square Error (MSE) and pseudo-Huber loss. Both
loss functions shows a quadratic behavior around y = ŷ, but
the pseudo-Huber loss approximates a straight line for extreme
values, making it less sensible to outliers.

regions of various densities (from low density, e.g. Tyrol area
in Austria, to high density, e.g. Chicago in the USA). For this
dataset, a ground truth made from official cadastral records
is provided in the form of a binary (building/non-building)
segmentation map.

Each region is divided in 36 tiles of size 5000×5000 pixels.
For each region, we select 4 tiles for testing our model, and
use the remaining 32 tiles for training. We regularly sample
patches of size 224× 224 pixels (without overlap), leading to
a total of 77440 patches in the training set and 9680 patches
for testing. We obtain the ground truth for our specific task by
counting the number of connected components in the provided
binary segmentation map for each patch. We note that an
important proportion of the tiles (32.9%) has no buildings,
and that the maximum number of buildings per tile is 38.

B. Experiments

In this section, we report the results achieved by the 4
investigated models (combinations of the two architectures and
loss functions). The ResNet-50 models are fine-tuned in their
last fully convolutional layer, while the RotEqNet models are
trained from scratch. Both models have been optimized with
the Adam optimizer introduced in [19] and a learning rate of
10−3 until convergence. We fixed the parameter δ of the Huber
loss (see Equation 2) to 0.5 experimentally.

As a comparison, we report the results obtained by an ap-
proach based on segmentation followed by counting. We used
the winning model of the 2017 INRIA challenge (segmentation
task on the same dataset) presented in [20] and based on
the U-Net architecture of [21] for the segmentation. This
model has been trained on the same train/test sets described
in subsection III-A.

For each model, we report the Root Mean Square Error
(RMSE) and the Mean Absolute Error (MAE) defined as
follow:

RMSE =

√
1

N

∑
i

(yi − ŷi)2 , (3)

TABLE I: Results of the studied models on our test dataset.
The bold numbers indicate the best performing model for each
column.

Architecture Loss Function All images Less than 6 buildings
RMSE MAE RMSE MAE

RotEqNet MSE 2.7655 1.8047 1.8911 1.2576
Huber 2.7466 1.6608 1.611 0.9831

ResNet-50 MSE 2.5677 1.7844 1.8296 1.3383
Huber 2.6433 1.6754 1.5452 1.0695

Baseline 5.7666 2.2266 6.1904 1.9102

MAE =
1

N

∑
i

|yi − ŷi| . (4)

These metrics are computed on the whole testing dataset (’All
images’), or only on the tiles containing strictly less than 6
buildings (’Less than 6 buildings’). Note that the latter subset
of tiles represents 69.8% of the testing dataset.

C. Discussion

Results are reported in Table Table I and discussed below.
Architectures: Our models outperform the baseline, showing
that the formulation of the problem as a regression task is
relevant. When comparing the architectures ResNet-50
generally obtains slightly better performances than RotEqNet.
While the MAE is sometimes lower for RotEqNet, the RMSE
is always lower for ResNet-50, indicating less variance in
its error distribution. However, it is important to note that
RotEqNet is much shallower and has not been pre-trained
on a multi-million images dataset like ImageNet. While
it would be interesting to compare both architectures on
similar settings, it was not possible to do so in this study
mainly due to the computational cost of pre-training on
ImageNet. The fact that the errors are similar confirms
that fine-tunning a widely used model trained on a much
larger dataset is still a valid methodology, even when the
considered problem (regression) is different from the original
one (classification). It also confirms that fully training a
model enforcing equivariance to rotation is also a good
option when considering remote sensing problems, as these
problems typically exhibit equivariance (or invariance in our
specific case) properties by the overhead perspective.

Loss functions: when we consider all images from the
dataset both MSE and Huber obtain equivalent results. How-
ever, the Huber loss performs better when only considering
images with a low number of buildings. This comes from the
fact that the MSE is highly influenced by outliers, leading the
loss value to be too dependent on outliers and very difficult
cases. On the contrary, the Huber loss is more robust to
outliers, as its gradient is constant for large errors. In practice,
it allows the network to learn from a greater selection of
samples during the training procedure.

Qualitative visual analysis: We show visual examples of
predictions made by RotEqNet trained with the Huber loss
in Figure 4. These examples show two outliers which are
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(a) Ground truth not up-to-date
with the image.
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(b) Connected buildings in the
ground truth.
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(c) Right prediction.

Fig. 4: Visual examples from the test dataset and predictions
made by RotEqNet trained with the Huber loss. The buildings
from the ground truth are indicated in red.

particularly problematic if used for the training with the MSE
loss:

• in Figure 4a, we can see that the ground truth is not up-
to-date with the image as it indicates buildings which are
not in the image.

• in Figure 4b, we can see an example where spatially
connected buildings are merged during the counting (due
to our approach of counting connected components in
the labeling to establish the ground truth). Our model
adapted to this behavior by under-predicting the number
of buildings (compared to the reality).

Finally, we show in Figure 4c a case where our model predicts
the right number of buildings.

IV. CONCLUSION

We compared two deep neural networks architectures (the
widely used ResNet-50 and the rotation equivariant RotEqNet)
and two loss functions (the Mean Squared Error and the Huber
loss) to solve a ‘counting through regression’ problem on very
high resolution remotely sensed color images. We showed
that, besides the widely-used option of fine-tuning a model
to a specific task, using a model equivariant to rotations is

a good option when considering remotely sensed images, for
which a strong prior is present due to the overhead perspective.
Moreover, we recommend to use the Huber loss in regression
tasks where the dataset shows an important variability, or
is prone to outliers (which is frequently the case in remote
sensing based counting). Future efforts will be focused on
extending this reasoning to several categories of objects, also
in the multi-category case, for which co-occurrence priors
could also be exploited [22].
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