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Abstract
When dealing with SAR image classification, the class parameters may vary along the swath for several reasons.
Traditional classification algorithms are then not well adapted, as they assume constant class parameters. In this paper,
we propose a binary classification algorithm based on Markov Random Fields that take into account the parameters
variations in the swath, and we present results obtained on airborne TropiSAR and simulated SWOT HR data.

1 Introduction
Because of their robustness with respect to weather and
light conditions, synthetic aperture radar (SAR) acquisi-
tions are used for mapping or change detection. These
applications often rely on a classification step, which is
one of the primary challenges in automated SAR image
analysis. This task can be achieved in many ways, e.g.
by pixelwise classification with prior speckle filtering, by
segmentation followed by region-wise classification [1],
by feature extraction and post-processing [14] or directly
using Markov Random Fields [13].
In this paper, we propose a binary classification method
adapted to class parameters variations along the swath.
Such variations can have several origins. For the SWOT
mission [7], whose principal instrument is a Ka-band
Radar Interferometer (KaRIn) operating at near-nadir in-
cidences (1◦-4◦), they are mainly due to the antenna pat-
tern, the evolution of the pixel size and the normalized
backscattering coefficient with incidence, as well as lo-
cal variations due to varying surface roughness. Even
if we let aside the latter, these variations cannot easily
be compensated globally, because the resulting intensity
evolution depends on the class: it is not the same for wa-
ter (strong backscattering in near-nadir) and land surfaces
(dominated by the thermal noise floor, which is flat). For
the airborne TropiSAR data used in this study, the varia-
tions are mainly due to the uncompensated antenna pat-
tern. Our main application is water detection which is an
important purpose for the future SWOT mission.
The proposed model is introduced in section 2. An exact
optimization method for this model is presented in sec-
tion 2.3. Finally, we present the results obtained on air-
borne TropiSAR and simulated SWOT HR data in section
3.

2 Non-Uniform Markov Random
Fields

Given a set of pixels S = {si, 0 ≤ i < Ns}, we consider
two random processes:

• V = (Vs)s∈S modeling the observed image to be
classified;

• U = (Us)s∈S modeling the result of the classifica-
tion.

In the previous definitions the state space are the follow-
ing: Vs ∈ R and Us ∈ Λ = {1, . . . , Nλ}, with Nλ the
number of classes. In the rest of this article, we only con-
sider the case of binary classification (i.e. Nλ = 2) even
though the proposed method could be adapted to multi-
label problems.
Realizations of V and U are named v = (vs)s∈S and
u = (us)s∈S respectively.

Our goal is to find the realization û of U that best ex-
plains the observation v. Following the work of [8], this
can be expressed as:

û = arg min
u
− log (p(v|u))− log (p(u))

= arg min
u
E(u) , (1)

involving the likelihood p(v|u) of the observation con-
sidering the chosen classification and a prior on the clas-
sification result p(u).

2.1 Prior definition

On such classification tasks, a widely used prior is to en-
force spatial coherence for the classes between neighbor
pixels. When using only 2 labels, a common prior is the
Ising model:

− log (p(u)) =
∑
{s,t}∈C

β |us − ut| , (2)

where C is the set of all cliques in S depending on the
chosen neighborhood (4 or 8 connectivity) and β is a bal-
ancing term, that needs to be tuned by the user.



2.2 Likelihood definition
In the case of intensity SAR images, speckle approxi-
mately follows a Gamma distribution [9] and can be con-
sidered separable:

p(V = v|U = u) =
∏
s∈S

p(Vs = vs|Us = us) , (3)

The likelihood p(Vs = vs|Us = us) is usually chosen for
each class i:

p(Vs = vs|Us = i) =
1

Γ(L)

L

µi

(
Lvs
µi

)L−1
e
−Lvsµi ,

(4)
where L is the number of looks of the image and µi is the
mean of the class i. In case of unsupervised classifica-
tion, µi is not available. It is usually estimated using an
iteratively updated classification. Given a previous clas-
sification uprev , µ̂i is given by the maximum-likelihood
estimator:

µ̂i =
1

|Si|
∑
s∈Si

vs , (5)

where Si = {s, uprev,s = i}.

2.2.1 Iterative parameters estimation

When considering unsupervised classification, equation 5
can not be applied directly. In [6] an iterative method is
used to estimate the parameters. This algorithm is sum-
marized in Figure 1. It requires an initialization (in the
following, we use K-Means algorithm to obtain it), and
estimate the parameters from this first classification. A
new classification is produced using computed parame-
ters and allows to estimate new parameters. This process
is iterated until no change occurs, or for a fixed number
of iterations.

parameters estimation
and classification

Initialization Classification

Figure 1: Summary of the method introduced in [6].
Starting from an initialization, two class parameters are
estimated and a classification using the described MRF is
done. New parameters are estimated from the classifica-
tion and the process is repeated iteratively.

2.2.2 Class variations

When classes have an important intra-class variation,
using only one parameter for each class does not yield
good results (see Figure 5c). We show the variation of

the true mean intensity for water and background classes
in a simulated SWOT SAR image in Figure 2. This
simulation is based on a physical modeling of the

surfaces [5] and the parameters are computed using a
ground-truth. The red curve shows the mean intensity

when computed on the whole image. Compared to the
locally computed means, the mean computed on the

whole image does not represent any part of the image.
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Figure 2: Across-track average intensity for each class in the
simulated SWOT image [5] depending on the position in the
swath.

To take into account the variations in the image, we pro-
pose to use variable parameters for each classes by im-
age partitioning. A summary of the proposed method is
shown in Figure 3.

Image partitioning We seek a partitioning of the im-
age so that each region fulfills the following require-
ments:

• It should contain enough pixels of the two classes
so that the maximum likelihood estimator is valid
(R1). In practice, a minimal size is fixed (in the
following: 2500 pixels) and the least represented
class in the region must be over a given percentage
(in the following: 10%).

• It should be small enough so there is almost no
variation of the parameters in it (R2). To reach
this minimal size, the partitioning is done as long
asR1 is fulfilled.

To obtain such a partition, we propose to use quadtrees
[11]. Quadtrees have been extensively used for image
coding [12] and segmentation [2].
The partitioning process is as follows:

1. Starting from a region (for the first iteration, the
region is the whole image) and a classification (ob-
tained either using a previous classification or K-
Means for the first iteration, and the previous clas-
sification for the next ones), a partitioning in re-
gions of equal size fulfilling the 2 requirements is
searched for the considered region:

(a) First, we divide the region in 4 (horizontal
and vertical cuts).

(b) If this division breaks one of the require-
ments, we cancel the previous division and
only divide in 2 (vertical cut).
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Figure 3: Summary of the proposed method. Starting from an initialization, class parameters are estimated and a
classification using the described MRF is done. From this classification, a partitioning is created as described in 2.2.2.
New parameters (one for each region and each class) are estimated from the classification and the process is repeated
iteratively.

(c) If this division also breaks one of the require-
ments, it is canceled, and we try to divide in
2 (horizontal cut).

(d) If this division also breaks one of the require-
ments, it is also canceled.

2. If a partition has been performed in the previous
steps, the class parameters are updated region-wise
and a new classification is computed. The newly
created regions are partitioned again starting from
step 1.

3. We stop the process when no region can be divided.

Global regularization of the parameters R1 is
checked using a previous classification. If the classifi-
cation contains wrongly classified pixels, it will impact
the following steps. To limit the influence of the initial-
ization, a regularization step enforcing smooth variations
along the swath is done.

Figure 4: Regularization curve for the parameters of the
water class of Figure 6.

At each iteration, a Least-Squares Fitting of a continuous
function (in our case, a second order polynomial) on the
values of the parameters of the regions is performed with
respect to the position in the swath of the center of the
region.
This allows us to obtain a global trend of the variations of
the parameters along the swath. Parameters that are too
far from this global trend are likely to be degenerate cases
and the parameters are set to the value of the curve at this
position. Parameters that are close enough to the value of

the curve are kept, allowing for some local variations in
the class parameters.

2.3 Optimization
Classical methods used for Markov Random Field opti-
mization such as ICM (iterated conditional modes) and
simulated annealing can be used to solve this problem.
For a binary classification task, the optimization scheme
introduced in [10] can also be used. This method allows
to find the global optimum by constructing a graph on
which a s-t cut corresponds to a solution to our problem.
The global optimum is found using a min-cut algorithm
[3] corresponding to the solution of minimum energy. To
perform the optimization when using more than 2 classes,
α-β swap can be used providing an approximate solution
[4].

3 Results
Dataset To illustrate the results of this method we ap-
plied it in the framework of water detection on two im-
ages:

1. Kaw, French Guiana, TropiSAR dataset ac-
quired by SETHI (airborne sensor of ONERA) in
Figure 5. P-Band, HH polarization, azimuth reso-
lution: 1.5m, slant-range resolution: 1.2m.

2. Camargue, France, SWOT simulation (2 looks)
([5]) in Figure 6. Ka-Band, azimuth resolution:
2m, range resolution from 10 to 60m.

Quantitative criteria For each classification output we
show the error rate, which is defined as:

FP + FN

TP + FN
, (6)

whereFP is the number of pixels incorrectly classified as
water, FN is the number of pixels incorrectly classified
as background and TP is the number of pixels correctly
classified as water.
For each of these images, we provide the obtained results:

• using the classification (obtained by K-Means)
used as an initialization of the algorithms;



• using the classical Markov Random Fields (one pa-
rameter for each class, [6] with the exact optimiza-
tion presented in this paper) with the same number
of iterations that were run for the image with the
Non-Uniform Markov Random Fields.

• using the proposed method.

Discussion The proposed method greatly improves the
results for TropiSAR data compared to the classical
Markov Random Fields, but only provides a limited im-
provement for SWOT images.
This can be explained by the contrast between the extrem-
ities of the images and the center of the antenna pattern.
This contrast is of 1.56 for the SWOT image, and of 4.79
for the TropiSAR image. With a high contrast between
the same class parameters across the image, the classical
Markov Random Fields will achieve poor results while
the proposed method is able to give better estimates.

(a) Input image (b) Initial clas-
sification, error
rate = 34.56%

(c) Uniform
MRF, error rate
= 11.37%

(d) Non Uni-
form MRF,
error rate =
4.49%

Figure 5: Results on Kaw area acquired with TropiSAR.
Green: true positive, red: false negative, black: true neg-
ative and blue: false positive. Input image provided by
ESA.

(a) Input image
[5]

(b) Initial clas-
sification, error
rate = 48.45%

(c) Uniform
MRF, error rate
= 5.81%

(d) Non Uni-
form MRF,
error rate =
5.63%

Figure 6: Extracts of the results obtained on simulated
SWOT images of the Camargue area. Green: true pos-
itive, red: false negative, black: true negative and blue:
false positive.

4 Conclusions
This paper introduces a partitioning-based classifica-
tion method suited to SAR data presenting variations
of the class parameters along the swath. This method
can improve the results when dealing with images with
an antenna pattern not corrected or other variations in
backscattering, for instance like SWOT or TropiSAR
data.
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