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1 Introduction and related work 

In the last decade, satellite/aerial imagery has been used to 

perform land-cover classification with great accuracy as it is 

possible to identify various land-cover types using spectral 

information contained in the top view. On the contrary, land-

use is a more complex task to be achieved using the overhead 

(aerial or satellite) perspective. For example, different land-

uses could be identified with a building, such as a school, a 

supermarket, or a hospital. Moreover, a land-use class like 

“university”- often includes several types of land covers, such 

as buildings, green areas, or a pond. Therefore, to have an 

interpretation of the use of urban-objects, satellite/aerial 

imagery alone is insufficient. For this reason, we propose to 

use ground-based (i.e. terrestrial with side-view) pictures, 

which capture characteristic feature of urban-objects. In this 

study, we define an urban-object as an urban spatial construct 

with a clear boundary of its own, which could be a building 

(e.g. supermarket, hospital) or an open space (natural and 

man-made, e.g. forest , garden, park, stadium, cemetery).  

 

Using geolocated ground based pictures to model urban 

landscapes is a rising trend in geospatial computer vision 

(Lefèvre et al. 2017). These pictures are generally either 

available on social media (Flickr, Instagram) or on online 

repositories for web-based projects like Geograph.  Tracewski 

et al. (2017) used georeferenced pictures from online sources  

(Flickr, Panoramio, and Geograph) to map the land cover of 

the cities of London (United Kingdom) and Paris (France). 

But such sources have their limitations for land-use 

characterisation and suffer from the following issues: 1) The 

pictures‟ content mostly does not pinpoint a particular urban-

object, but landscapes, and depict the perception of the user 

taking that picture (mostly touristic viewpoints, landscapes); 

2) Platforms like Instagram provide personalized picture 

content  (selfies, object zooms of flowers, pets, etc.) which is 

seldom a characteristic of the land-use of the urban-object; 3) 

Pictures are unevenly distributed in a city, with touristic areas 

having a great concentration, while few pictures are available 

for other important urban-objects like hospitals, universities, 

or industrial areas; 4) The orientation and position of the 

camera is not known, thus adding ambiguity about the 

accuracy of the geo-location and the picture content (Produit 

et al. 2014); 5) The data is not available evenly across major 

cities around the globe. For example, Geograph though 

suitable for land-cover analysis but still it cannot be used for 

land-use characterisation, as it has limited data for urban-

objects, and is geographically limited to Great Britain, Ireland, 

and the Isle of Man.  

 

"Google Street View" (GSV) pictures seem more promising 

in this respect, as they capture many urban-objects with 

precise geolocation and are objective, in the sense that they 

simply picture a street from a vehicle, without any personal 

touch. GSV pictures are evenly distributed across urban areas 

of most countries worldwide (in 2012, Google announced that 

it has covered 39 countries and about 3,000 cities). They also 

provide the possibility of extracting contextual information by 

varying parameters like: field-of-view, heading, and pitch 

(Google Street View Image API). In addition, GSV is updated 

every year, and historical data dating back to 2007 could be 

accessed across major cities. The privacy and safety concerns 

are addressed by blurring out personal content like faces, 

license plates, homes (on request). Figure 1 provides 

examples of GSV and other social media generated picture 

content for a given urban-object. Recent research has used 

GSV to assess physical changes in an urban area (Naik et al. 

2017), to detect urban trees (Wegner et al. 2016) or to map 

land-cover within a city (Workman et al. 2017). The last work 

is probably the most significant for our paper: Workman et al. 

(2017) propose a methodology to use GSV pictures to train a 

model predicting land-use at the pixel level and with dense 

(public) ground truth provided by the New York City 

Department of City Planning. Despite the quality of the 

results, this method cannot be applied easily to new cities, as 

most do not have such high quality pre-processed labels. This 

kind of ground truth is not frequently updated because of 

economical reasons, availability of expert human resource as 

well as time involved. To apply the model trained in New 

York to new cities remains a hard task that requires model 

adaptation and complex machine learning pipelines (Yokoya 

et al. in press). To tackle the issue of lack of ground truth, we 

propose to complement GSV pictures with the labels extracted 

from OpenStreetMap (OSM). OSM is an open geographic 

data source, which provides annotations of land-use for 

various urban-objects in cities worldwide.  
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Specifically, In this paper, we propose a new way to tackle 

land-use classification using GSV pictures and OSM data. We 

first extract visual features from the GSV pictures using deep 

Convolutional Neural Network (CNNs) models and then use 

the features to train classifiers using the OSM labels at the 

urban-object level. This means that we consider multiple 

pictures for a single urban-object, i.e. all the GSV pictures 

surrounding the object (acquired by the Google car) and also 

those available within the object itself (pictures taken by 

various users).  We studied a set of urban-objects from the 

city center of Paris (France), grouped in 13 fine grained  land-

use classes. Through this study, we were able to show that we 

can predict the land-use labels for various urban-objects. The 

results obtained are promising and open up new possibilities 

for automating the use of freely available data for land-use 

mapping and automatic updating. 

 

2 Dataset 

We chose the city of Paris, France for our case study. We 

work at the urban-object level, where we consider the task of 

classifying vector shapes corresponding to urban-objects into 

a single land-use class. The objects are those defined in OSM, 

and each object is labeled with one of the 13 land-use classes 

detailed in Table 1. Some of these 13 classes were defined by 

merging sub-classes based on their urban utility: for example, 

class "educational" was created by combining sub-classes like 

“school”, “university” or “college”. We then downloaded, for 

each urban-object, the corresponding GSV pictures using the 

Google API, for both within and outside locations (we will 

differentiate them as 'inside' and 'outside' pictures hereafter). 

For inside location of a given urban-object in our dataset, we 

extracted pictures where users uploaded GSV pictures. We 

analyzed the OSM polygon boundaries of the urban-objects 

for which „outside‟  pictures taken by Google were available. 

For every OSM polygon boundary that was adjacent to a 

street we downloaded a picture looking at the center of that 

boundary. In order to determine if a boundary of an urban-

object is adjacent to a street we used street vectorial data from 

the European Environmental Agency‟s Urban Atlas vector 

database. By this procedure, we obtained a dataset of 4249 

labeled objects from OSM and corresponding 34261 pictures 

from GSV (Figure 1). 

 

3 Method 

Our proposed method is composed of two main steps. The 

first step involves extracting features for each GSV pictures 

using pre-trained CNNs. CNNs are state-of-the art approaches 

for many computer vision tasks like segmentation, 

classification and object detection (Goodfellow et al., 2016). 

A pre-trained networks is a model that has been trained using 

a large dataset for another task, but whose features provide 

very strong visual cues to train land cover / land-use 

classifiers (Lefèvre et al., 2017). In this work we evaluate two 

pre-trained CNN models as features extractors, namely 

Inception-V3 (Szegedy et al. 2016) and VGG-16 (Simonyan 

and Zisserman 2014), mostly because they were successfully 

applied to land-cover classification from geo-tagged pictures 

in (Xu et al. 2017) and (Workman et al. 2017). We retained as 

feature vectors the activations obtained from the penultimate 

layer of the CNNs and used them as inputs for the visual 

recognition task of discerning urban land-use classes. 

Specifically, we employed the following three pre-trained 

Figure 1: a) OSM Layer, b) GSV outside pictures, c) GSV 

inside pictures, d) Social media pictures (source:Panoramio). 

 
 

 

 

CNNs for feature extraction:  

1) Inception-v3 trained on the ImageNet dataset: this 

configuration provides a 2‟048-dimensional feature (named as 

Inception in tables 2a, 2b and 2c) per GSV picture.  

2) VGG-16 also trained on the ImageNet dataset: this 

configuration provides a 4‟096 dimensional feature vector 

(named as  VGG16I  in tables 2a, 2b and 2c) per GSV picture. 

3) VGG-16, but trained on the Places365 dataset (Zhou et al. 

2017): this also provides 4‟096 dimensional feature vector 

(named as VGG16P in tables 2a, 2b, 2c) per GSV picture.  

 

The reason for exploring models trained on two different 

datasets in VGG-16 (ImageNet and Places365) is to study 

whether a model trained on ImageNet (which is an object-

centric dataset, i.e. a model trained to recognize objects within 

the pictures) is more appropriate for our task than using a 

Table 1:Number of urban-objects, pictures per land-use class 

Land-use # Urban-objects # Pictures 

Parks 1892 14579 

Sports 311 1630 

Heritage 153 1791 

Forest 177 2937 

Educational 622 3868 

Medical 71 1062 

Government 279 2063 

Religious 212 1131 

Cemetery 51 460 

Parking 126 1358 

Industrial 69 954 

Hotel 252 1246 

Marina 34 1182 
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model trained on the Places365 dataset (which is a scene-

centric dataset, i.e. a model trained to categorize the whole 

picture into a class). 

The second step of our method performs the classification into 

land-use at the urban-object level. Given a feature vector 

extracted by the CNN, we train a land-use classifier aiming at 

predicting the land-use label of each urban-object. Note that 

we have several GSV pictures associated with each urban-

object: though single pictures alone may not be able to 

identify the land-use, the ensemble of  these pictures could 

provide sufficient richness of information to enable the 

classifier to learn the correct land-use of the urban-object. For 

example, both a park and a forest will have pictures of trees, 

but the park may also have pictures with people having 

picnics, children playing or people running. A university and a 

museum may have similar appearance in pictures taken from 

outside of them, but the inside pictures will help discerning 

the two. Therefore, we implemented and compared two 

variants of the aggregation of the feature extracted from single 

GSV pictures belonging to an urban-object.  

Variant-1 (Fig. 2) consists in classifying the features of each 

GSV picture and then taking the majority prediction over all 

the pictures for an urban-object as the final prediction;  

Variant-2 (Fig. 3) consists in averaging the features coming 

from all the GSV pictures of an urban-object and then training 

the classifier with the averaged feature.  

In both cases of the variants, we compared three classifiers: 

1) Support Vector Machines with Linear kernel (SVM-

Linear), 2) Support Vector Machines with radial basis 

function (SVM-RBF), and 3) Multi-Layer Perceptron (MLP).  

 

 

 

Figure 2: Flowchart for Variant-1 

 

 
 

Figure 3: Flowchart for Variant-2 

 

 

 

 

 

 

 

 

 

4 Experiments and Results 

The data available for each class was split in the ratio of 3:1 

for train and test, respectively. As it can be seen in Table 1, 

our dataset suffers from class imbalance. To tackle it 

effectively, we trained the classifiers with class weights 

inversely proportional to the number of samples for that class. 

For all SVM classifiers, a grid search was performed to obtain 

the best parameters. The MLP (with a hidden layer of 128 

neurons) was run during 250 epochs with initial learning rate 

of 0.0001 and a batch size of 20. Below, we report the average 

of overall accuracy (OA) and average accuracy (AA) over five 

different train and test splits of the dataset in the tables. Tables 

2a, 2b and 2c show OA and AA for combinations of picture 

locations (Table 2a: inside pictures only, Table 2b: outside 

pictures only,  Table 2c: inside and outside pictures together), 

feature type, aggregation methods, and classifiers. OA1 and 

AA1 are the accuracies using variant-1. OA2 and AA2 are the 

results for variant-2. 

As far as AA is concerned, we observed that averaging 

features (variant-2) leads to considerably better performances 

than the approach using features for individual pictures 

(variant-1), see Table 2b and 2c, AA2 is clearly better than 

AA1. Variant-1 is suboptimal because different land-uses 

(e.g., forest and park) may contain common objects  

(e.g., trees, muddy paths, animals), making it difficult to 

distinguish between land-use classes, for example if the 

classifier learns to predict pictures with objects like trees as 

pertaining to the “forest” class, then a land-use class like park 

will need to have more pictures of other objects (like benches, 

fountain, concrete pathways, open spaces) than trees to be 

able to predict correctly the label “park”. Also in variant-1, 

the objects found in different pictures for an urban-object are 

not bound together while training, thus the contextual 

information needed to learn a land-use class is missing: in 

other words, in variant-1 each picture is classified  into a land-

use class independently, while land-use can be understood 

only by looking at the ensemble of pictures per urban-object. 

The approach of aggregating features (variant-2) is more 

appropriate, mostly because the averaged feature vector 

contains simultaneously information about the various objects 

that characterise a land-use class: for example, an urban-

object from the class “religious place” could be represented by 

objects like statues, benches or candles. For variant-2, OA2 is 

generally higher (see Table 2b, 2c) than OA1 of variant-1 

except for the case of using inside pictures only. When the 

classifiers are trained with both inside and outside pictures 

together they perform better than just with outside pictures 

alone. OA for the 'inside pictures' experiments are close to 

those of the model using both „inside and outside pictures‟ 

simultaneously (compare OA1 and OA2 of Table 2a with 

corresponding entry in Table 2c). However, also note that 

direct comparison is delicate, since the number of samples of 

„inside pictures‟ is smaller than „inside and outside pictures‟ 

(thus size of test set is smaller too). This is due to the fact that 

not all urban-objects come with inside pictures in GSV.  

 

In general, the classifiers trained with features extracted 

from Inception-v3 perform better than those with features 

extracted from other networks, which are VGG16-I and 

VGG16-P (see bold OA and AA in Tables 2a, 2b,2c). Features 

extracted from VGG-16 trained on ImageNet and on 

Places365 are comparable in performance for various 

classifiers except for MLP where VGG16-P is better than 
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VGG16-I in AA. We also wanted to experiment with 

Inception-v3 architecture, trained on Places365: unfortunately, 

we could not validate this model in this paper, as the pre-

trained model for Inception-v3 with Places365 dataset is not 

available and our dataset is not sufficient to train such a large 

CNN model from scratch. As an extension of this work in 

future, we will fine-tune pre-trained CNN models with our 

land-use characterisation. Regarding the classifiers, MLP 

tends to obtain a better AA, whereas SVM-RBF classifier 

performs better in terms of OA but yields poor AA (Table 2a, 

2b, 2c). This can be explained by the fact that SVM RBF 

obtains poor class accuracy when classifying classes 

“heritage”, “forest”, “medical” (below 30%), and “parking”, 

“cemetery” and “hotel” (below 40%). 

 

 

 

 

 

 

 

 

 

 

 

5 Conclusion 

In this paper, we proposed a machine learning method to 

predict land-use at the urban-object level using freely 

available ground based photography (Google Street View) and 

crowdsourced land-use information (OpenStreetMap). The 

preliminary results obtained on a case study over Paris, 

France, permits us to provide a series of guidelines: first, we 

recommend to exploit the complementarity of outside and 

inside pictures (when available), to aggregate pictures of a 

same urban-object at the feature level rather than after single 

picture classification. Secondly, regarding the classifier, the 

choice between MLP and SVM-RBF depends on the desired 

results; although SVM-RBF can correctly predict labels for a 

larger number of urban-objects, it is inferior in average 

accuracy, while MLP is more consistent among the different 

classes. In the future, we will extend this study to more urban 

areas worldwide using fine-tuned CNN models. 
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